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 ABSTRACT 
 This  paper  introduces  OSET-Rosetta,  a  system  architecture  for  building  interactive  natural 
 language  agents  to  provide  information  with  citations  in  bounded  domains.  OSET-Rosetta  relies 
 exclusively  on  a  bounded  knowledge  base  compiled  from  a  curated  set  of  authoritative 
 information  to  generate  responses  that  are  free  of  inaccurate,  false,  or  fabricated  content.  The 
 design  binds  the  knowledge  base  to  an  LLM  for  purposes  of  conversational  exchange. 
 OSET-Rosetta  is  agnostic  to  the  choice  of  LLM  for  this  limited  purpose,  with  a  preference  for 
 efficient  or  compact  LLMs.  OSET-Rosetta  agents  are  composed  of  domain-specific  and 
 domain-independent  modules  that  are  deployed  in  a  cloud  environment  and  operate  behind  a 
 service API. 

 1. Background and Overview 

 OSET-Rosetta (“Rosetta”) is a system architecture for any natural language agent (NLA) 
 that is limited to one domain of information: a domain-specific agent that uses a natural 
 language interface to act as an interactive guide that assists a user in exploring a fixed 
 set of authoritative information. The OSET Institute developed Rosetta as part of efforts 
 to make agents that are specific to the information domain of elections; however, 
 Rosetta can be used by developers of any domain specific agent that shares a critical 
 requirement:  extremely low tolerance  for an agent  that provides information that might 
 be inaccurate, false, or fabricated by agent “hallucinations.” 
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 A critical Rosetta concept is a “knowledge base” (KB). Each agent has a KB that is a set 
 of data that was compiled from source information about the information domain that 
 the agent provides access to. Though not required for every Rosetta-based agent, the 
 typical use case is a KB that is derived entirely from a curated set of authoritative source 
 information. For example, in OSET Institute’s first Rosetta-based agent system,  Ella  , 
 the KB is all official information about how elections are administered and operated in a 
 single state or province, from election laws down to election-worker training materials. 

 The Rosetta architecture is for use by natural language agent developers to repeatedly 
 build agent systems that require these essential capabilities: 

 ●  Accept prompts that are within the scope of the domain, and politely reject out of 
 scope prompts; 

 ●  Return responses that are strictly limited to information in the KB; 

 ●  Responses include citations to the source information of the KB data that: 
 ○  the agent used to build the response, and 
 ○  users can follow to review the source information and decide for themselves 

 whether the agent’s response is trustworthy. 

 ●  Use any one of several LLMs/SLMs or other base models for: 
 ○  natural language processing (NLP), but 
 ○  isolate the base model  from user interaction that might convey inaccurate 

 information, or indeed any information outside of the KB. 

 ●  Incorporate proven methods to promote relevance, to manage toxicity, to protect 
 personally identifiable information (PII), and address related critical concerns for 
 trust and safety. 

 These several critical objectives are met with a considerable amount of re-use, 
 extension, and adaptation of existing techniques using generative-AI technology, 
 especially in the Rosetta approach of isolating core AI functions to an external base 
 model. In addition to the core subsystem architecture in  Section 6  ,  the Appendix 
 provides technical detail on these techniques, including several response generation 
 control techniques (e.g., RAG, RAG fusion, directed RAG, corrective RAG), and several 
 approaches to trust and safety issues. 

 Figure 1  provides the most high-level view of the architecture for a system with the 
 above capabilities. The typical agent system, at the highest level, has the following set of 
 components. The  client  interacts with the  user  to  collect the user’s  prompt  (or 
 question) after establishing  context  for the prompt,  within the information domain of 
 the KB. The  server  takes the prompt and context from  the client, extracts relevant 
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 information from the KB, and uses the  natural language processing  (NLP) of an 
 external  language base model  to construct a response for the user’s prompt, 
 including  citations  for information provided, derived  from the KB. The client then 
 displays the response  —  along with citations  —  to  the user, and presents a user interface 
 for next steps. Most systems will include a web client as shown in  Figure 1  , but there 
 are other kinds of client, as described in  Section 5  . 

 Figure 1:  Rosetta Agent Architecture 

 In  Figure 1  , the language model service is shown in yellow because it is external to the 
 agent system, an external service to be used as-is for its NLP capabilities. The client and 
 KB are shown in blue, because they are specific to a specific agent system’s domain of 
 information. The server is shown in green because the functionality is largely 
 independent of the domain. That is, the core technology of Rosetta, in the server, is 
 reusable across many agent systems that meet the Rosetta characteristics described 
 above. As OSET Institute continues development of agents based on the Rosetta 
 architecture, that work will grow in re-usable results: 

 1.  A base of re-usable open-source software modules that can be used to perform 
 agent functions that are independent of any particular information domain; and 

 2.  A set of worked examples of domain-specific software components that be used 
 by agent developers working in other domains than elections. A major function of 
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 this architecture document is to differentiate the domain-specific parts of the 
 architecture from the domain-independent parts of the architecture. 

 The value of these results is complemented by their applicability to multiple information 
 domains, and to multiple deployment environments: Rosetta-based systems are 
 agnostic as to the cloud hosting environment, and as to the existing language model 
 used, because the services and functions required are common to most current clouds 
 and language models. 

 2. Operational Architecture 

 The operational architecture for Rosetta is composed of the top-level components described 
 above, together with some additional components, all of which are described in more detail and 
 illustrated in  Figure 2  . 

 Clients are software used on users’ devices, to provide a human interface to interact with an 
 agent. For many agent systems, a web interface would be typical, but several kinds of client 
 might be developed, for example, a text based interface, a pure voice interface delivered via 
 phone, or a native mobile app client. Web and mobile clients could also incorporate user speech 
 recognition and agent output text-to-speech. 

 Clients use a common application programming interface  (  API  ) to interact with the rest of a 
 Rosetta-based agent system. The API hides from the rest of the system all of the details of 
 user-interface, including domain-specific features of UIs. 

 A server software component is deployed on a cloud services platform. The server provides the 
 API to clients, and also uses external APIs to access other services, including those of a base 
 model. The server is the workhorse of a Rosetta-based system, performing a variety of tasks for 
 using the KB, construction of relevant responses to user prompts, selecting citations, and several 
 trust and safety functions. 

 Most of the constituent modules of the server perform domain-independent functions, and can 
 be re-used in the construction of multiple agents, each with a different KB (and different 
 domain-specific clients), but common server functions. 

 A knowledge base (  KB  ) is contained in an instance  of a  KB repository  , which is built using the 
 data storage and access services of the cloud platform. The contents of a KB are application 
 specific, but the structure, storage, and access methods are not — though they might be specific 
 to a cloud platform, hidden behind an abstraction layer of a software module of the server. The 
 same is true of the software tools used to populate a KB with data compiled from the 
 information sources for the agent system, as part of the agent system deployment process, or 
 redeployment process. 

 A  base model service  is used by the server to access  the functionality of one existing base 
 model, separate from the server component itself. The model can be a commercial large 
 language model (  LLM  ) or one of the emerging small(er) language models. A Rosetta based 
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 system is  model-independent  . The Institute has performed  integration with several current 
 models. For a specific agent system, its developers can make their own choices about which base 
 model to use, based on system specific requirements for scaling, cost, performance, and more. 

 The actual usage of the base model is via an API, either offered by a commercial vendor (e.g., 
 Google, Microsoft, OpenAI, Anthropic, et al), or of a model service offered by a cloud services 
 provider, such as any of several models that Azure and AWS offer as a service. 

 In addition to the external service of the base model, other  external services  are part of the 
 architecture, each accessed by the server component via the services’s API; each such API is 
 paired with a Rosetta server software module, for example: external services to provide prompt 
 toxicity evaluation. 

 Last but not least, any OSET-Rosetta agent will require a cloud deployment environment, with 
 several cloud services including but not limited to: storage and network access for the KB, and 
 for log data; server API gateway; virtual server host on which to run the software of the server 
 component. 

 3. An Example of an OSET-Rosetta System Agent: Ella  ™ 

 Figure 2  is a diagram that illustrates not only the components of the operational architecture, 
 but also the interaction between them.  Figure 2  is an example of the architecture, depicting a 
 specific Rosetta-based system: Ella, an agent being built to the OSET-Rosetta architecture 
 specification, to provide a natural language interface for  information retrieval  from a 
 knowledge of election related information that is specific to a given state. Components colored 
 blue are specific to Ella for a given state, and would be specific to any other agent system. 
 Components colored green are OSET-Rosetta architecture components that can be common 
 across several agents. Components colored gray are external systems that are used by the 
 blue-shaded components. The dashed-line box shows the cloud deployment environment for the 
 non-client parts of Ella. Clients run on user devices, and external services run in their own 
 environments, accessible to the server via the public network. 

 Near the top of the diagram is one of several possible client-interfaces, a web client, which runs 
 in a web browser of the  User  , at top. The client interacts  with the main body of agent system 
 software via the OSET-Rosetta API. Other kinds of clients (e.g., mobile, text, voice-interactive) 
 use the same API, which is agnostic about the methods a client uses to interact with a user. At its 
 simplest, the API is simply the method of network communication for a client to send a text 
 prompt (question) over the Internet to the server, and receive back from it a response (answer). 

 Clients can run on a device of a user’s choice; in  Figure 2  , the web client is shown as running in 
 the browser of a user’s device. More detailed technical architecture on multiple kinds of clients 
 is provided in Section 5 below. 

 In the middle of  Figure 2  , below the Ella web client, is the server component of Ella, built 
 largely with domain-independent software. The down arrow with “Rosetta API” shows that this 
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 client (  and any other  ) use the API presented by the server, in order to send prompts and receive 
 responses. 

 The server itself is deployed in a cloud hosting environment, using several cloud services to run 
 the server software and support its operation. 

 Figure 2:  Ella: An Example Implementation of the OSET-Rosetta Agent Architecture 

 To the right of the server, and within the same cloud hosting environment, is the Ella knowledge 
 base (KB)  .  The construction and composition of the KB are described below in  Section 7  . The 
 diagram shows that the server uses the KB to retrieve data that is relevant to a user prompt and 
 used to construct the response to the prompt. The access to the KB is read-only; the KB is not 
 modified by the server, and indeed not modified in the operational environment.  Section 7 
 describes the process in which an updated KB is part of an update/redeployment. 

 In the lower middle of  Figure 2  , inside the green box of the server, are several OSET-Rosetta 
 Modules, reusable software that performs domain-independent common functions of a server in 
 an OSET-Rosetta agent. These functions include: API implementation; prompt processing; KB 
 access; base model usage; base model output analysis; usage of base model to construct 
 candidate responses; candidate ranking and selection; construction of responses and selection of 
 citations to be returned via the API to the client. The base model usage is via the model service’s 
 API to the service implementation, shown at lower left as a tan-colored box. 
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 Along this sequence of activities, several trust and safety functions are performed by some of the 
 OSET-Rosetta Modules. Some of these functions are based on open-source library software; 
 others are performed using existing services, via an API to each external service (the box shown 
 at lower left).  Section 6  has details on some of the trust and safety functions that are current 
 best practices used in Rosetta-based agent systems. 

 A critical feature of  Figure 2  is the intentional lack of specificity about the base model used for 
 natural language processing (NLP). Existing model-integration efforts on OSET-Rosetta have 
 shown that any of several models — ranging from established and growing large language 
 models (LLMs) to somewhat less powerful “small” (or “efficient”) language models — can 
 perform the required NLP functions. In the development and deployment of a particular agent, 
 the choice of specific model will be made based on criteria specific to the agent and the domain. 
 For example, for OSET Institute’s work on election-related agents, smaller models appear to be 
 more than adequate for NLP tasks, and come with other benefits: lower operating costs, greater 
 choice of cloud environments, more scalability, and lack of a large set of training data on topics 
 not relevant to elections, or inaccurate with respect to election administration. 

 4. High Level Workflow Diagram 

 Figure 3  is a diagram illustrating the components from  Figure 2  in the context of a workflow 
 of a single user transaction. 

 Figure 3:  OSET-Rosetta Workflow 
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 The activity of a single user’s transaction is performed in a sequence of steps listed below. The 
 first step is UI activity in the client; the second step and the final step are client/server; all the 
 intervening steps are entirely within the server, summarized here and described in more detail 
 in  Section 6  . 

 1.  User/Client Interaction  : The client interacts with  the user (top center) to establish 
 context and to collect a prompt from the user. 

 2.  Client to Server  : Using the Rosetta API, the client  sends to the server (down arrow) the 
 prompt and context meta-data; and the server receives the request from the client. 

 3.  Prompt Intake  : The server performs prompt intake and  preprocessing — including 
 tokenization (partition into smaller units), extraction of relevant keywords, toxicity 
 assessment — including the use of modules that perform an intake function via calls to 
 external services’ APIs (lower left). 
 ●  These activities can determine that the prompt is out of scope, or otherwise 

 unsuitable for a tailored response, including preliminary  trust and safety  flagging for 
 toxicity. In any of these cases, the result is that all the subsequent steps are skipped. 
 Instead, the server returns to the client, via the API,  a polite non-response 
 explanation with any relevant meta-data; the client displays the explanation, with the 
 optional addition of domain-specific use of meta-data. 

 4.  Pre-NLP Preparation  : Prior to using the base model,  there are two kinds of  preparations 
 that the server performs. The first is Internal Knowledge Base Query, in which the KB is 
 queried to gather relevant background information related to the prompt, and the 
 retrieved information is ranked for relevance. The second are preparatory  trust and 
 safety  activities, including masking any PII in the  prompt, to prevent it from being 
 exposed to the language model. 

 5.  Retrieval and Generation  : There are multiple iterations  of both the server’s KB access 
 (right arrow for lookup/search; left arrow for KB results and citations) and also the 
 server’s base model access (lower left) to marshall candidates for the primary response 
 text. During this iteration, other  trust and safety  techniques come into play (e.g., the use 
 of guardrails of the underlying base model). 

 6.  Logging Finalization  : Logging is performed at several  points on the cycle of a single 
 transaction (e.g., recording usage of external APIs), but before a finished response is 
 returned to the client, the server’s logging module finalizes any remaining logging tasks 
 pertinent to the transaction. 

 7.  Response Finalization and Annotation  : When the retrieval/generation  iterations have 
 completed, the server assembles the final polished response — together with citations — 
 logs the final response, and deliveres it to the client via an API response. 

 8.  Server to Client  : The client receives the API return  data, and presents the response,— 
 including  the citations — in the client UI. 
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 Section 6  provides more information on the server software design and workflow, particularly 
 for steps 4 and 5. For this initial high level description of the overall workflow, there are two 
 critical points of distinction between several steps above, including: 

 ●  The user’s prompt in  step 2  , 
 ●  The prompts to the base model in  step 5  , 
 ●  The responses from the base model in  step 5  , and 
 ●  The response to the client in  step 8  . 

 Those critical distinctions are as follows: 

 1.  First, the user’s prompt is not what is used as the prompt in calls to the base model. 
 Rather, 

 a.  Processing in  steps 3-5  creates a far more complex  prompt for the base model, a 
 prompt that is composed of KB items retrieved and sorted by relevance to the 
 user-prompt data that result from intake at  step 3  . 

 b.  Further, the prompt to the base is iteratively refined during  step 6  . 
 c.  The actual prompt is analogous to, but more complex than a prompt along these 

 lines:  “Generate a three paragraph plain language  summary of the following 27 
 text units: …” 

 2.  Second, the response to the client and user is not the same as a single response from the 
 base model. 

 a.  The base model’s initial response is refined iteratively, both for relevance to the 
 KB information, and by trust and safety methods. 

 b.  It is only at step 8 that the final to-the-client response is constructed, partly from 
 the result of the base model’s NLP, and partly from citations to the KB items that 
 were used in the construction of the response. 

 5. Client Architecture and Workflow 

 An agent development team must implement one or more kinds of client software components. 
 Regardless of type, clients provide the same overall functionality, and use the same API to 
 interact with the same server. However, clients differ based on the communication channel 
 used, and on the software platform employed. 

 Four Types of Client 
 Figure 4  (below) shows four types of clients: Web, native mobile App, SMS client, and client for 
 Voice interface. In all four cases across the top of  Figure 4  , there is a user with their device; the 
 software used on the device varies between the four cases. 

 In the case of a Web client (top left of  Figure 4  ), the user depends on their device’s web browser 
 resolving to URL in a link on any website, but typically including a link from a state or local 
 elections office website. The link is not to a web page, but to a JavaScript App stored on a server 
 in the deployment environment. After the App loads into the browser, the user sees a typical 
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 Web interface, which implements the workflow described below, and uses the API to access the 
 server that implements the non-client part of the agent system. 

 Figure 4:  Rosetta Clients Architecture 

 The case of a native mobile App (top left of center) is very similar, except that the user must first 
 download the App from an authorized provider, then launch it. The mobile app implements a 
 workflow that is similar to the workflow of the web app, and uses the same API. Like the web 
 client, the native mobile app interacts with the server  directly  via the API. 

 In the case of an SMS interface (top right of center), the device’s native SMS capability is 
 utilized. The user must first obtain a dial number to use for text-based communication.  On the 
 receiving end of that number is an instance of an SMS gateway, which is a common service in 
 the deployment environment. Unlike a mobile app, the user device’s SMS app is not able to use a 
 new API; it can only collect user text and send it as an SMS message. The SMS gateway’s job is 
 to receive an SMS message, and forward it to the server via the server’s API. The SMS gateway 
 (yellow box inside the dashed line deployment environment in  Figure 4  ), is set up and 
 configured (i.e., interior blue box in  Figure 4  ) to implement the workflow via exchange of text 
 messages. When the server replies to an API request with a response to the user’s prompt, the 
 gateway sends that text back to the user via SMS. 

 In the case of a voice interface (i.e., top right,  Figure 4  ), the device’s native voice capability is 
 used with a specific phone number, analogous to the use of SMS capability. In the case of a voice 
 client, instead of an SMS gateway in the cloud deployment environment, the client 
 implementation uses a voice app gateway that has speech-to-text and text-to-speech capability. 
 The same API is used to send the text of a user’s prompt (converted from speech) to the server, 
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 and to receive a text response back, which is then converted to speech and rendered in the user’s 
 voice call session. 

 Standard Client Functionality: A Foundation for Efficiency 
 Several area of functionality are essential across all client types, forming a solid foundation for 
 efficient development and consistent user experience: 

 ●  Domain Encapsulation  : Clients should encapsulate the  specific functions and knowledge 
 of their respective domains, mirroring the Knowledge Base (KB) role. This involves: 
 ●  Explanatory Functions: Guiding the user by explaining the Agent's purpose and 

 capabilities within its domain. 

 ●  Domain-Specific Workflows: Leading the user through relevant topics to establish 
 context for their prompts, ensuring accurate and helpful responses. 

 ●  Context Management  : Maintaining context is crucial  for response relevance. Clients 
 employ mechanisms like context tags to represent the user's journey and current focus 
 within the domain. This is especially important when users lack domain-specific 
 vocabulary or require introductory interactions to build trust and understanding. 

 ●  Rosetta API Integration  : All clients should act as  API clients to the server component, 
 utilizing the OSET-Rosetta API for: 
 ●  Prompt Submission: Sending user prompts along with context tags to the server. 

 ●  Response and Citation Handling: Receiving and presenting responses to the user and 
 citations linking to the source information used to generate the response. This 
 empowers users to assess the response's credibility and explore further. 

 ●  Citation Presentation and Navigation  : The client interacts  with the user to perform the 
 user’s choices of citation presentation, citation navigation, iteration to the next user 
 prompt, and possibly some other domain-specific actions in the user interface. 

 ●  Language Localization  : Supporting multiple languages  allows for broader accessibility 
 and user engagement. Clients should enable users to select their preferred language and 
 experience the entire interaction in that language. 

 Channel-Specific Design: Tailoring the Experience 
 While the core functionalities remain consistent, each communication channel requires a unique 
 design and communication approach. Below are the channel-specific unique characteristics. 

 Web App and Native Mobile App 
 ●  Rich User Interface  : Leverage the visual capabilities of Apps to provide interactive 

 elements, visualizations, and intuitive navigation. 

 ●  Multi-Modal Interactions  : Integrate text input with voice commands, image recognition, 
 and other modalities for a more engaging user experience. 
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 ●  Offline Functionality  : Mobile apps enable certain features to work offline, enhancing 
 accessibility and user convenience. 

 SMS  : 
 ●  Concise Interactions  : Adapt to the limitations of text messages by keeping interactions 

 brief and focused. 

 ●  Menu-Driven Navigation  : Utilize numbered menus or keyword-based commands for 
 user input and navigation. 

 ●  Asynchronous Communication  : Design for asynchronous interactions, acknowledging 
 potential delays in responses. 

 Voice  : 
 ●  Natural Language Processing  : Implement robust NLP capabilities to interpret spoken 

 language and intent accurately. 

 ●  Speech Synthesis  : Deliver clear and natural-sounding responses using high-quality 
 text-to-speech technology. 

 ●  Interrupt Support  : Allow users to interrupt or provide additional input during the 
 agent's response for a more natural conversation flow. 

 Certain capabilities, especially those related to prompt collection, response presentation, and 
 citation navigation, can benefit from open-source reference implementations like Ella's Web UI. 
 This allows developers to focus on domain-specific aspects and channel-specific adaptations, 
 accelerating development and ensuring best practices are followed. 

 6. Server Architecture and Workflow 

 In the OSET-Rosetta architecture, an agent system’s server software component has an 
 architecture that is defined by both external interfaces, and internal structure for re-usable 
 modular implementation of the server’s core functions. These modules are in four subsystems. 

 External Interface Subsystem 
 The external interfaces are used for interaction with other components as shown in  Figure 2  , 
 but more specifically in these modules: 

 ●  Cloud Services Modules  : Operating in a cloud hosting environment, the server interacts 
 with the environment’s services for network communication, data storage, software 
 execution, including but not limited to: access to the cloud’s data storage services and 
 networking to access: 
 ○  the data storage service instance that houses the agent system’s KB, and 
 ○  the storage service instance that houses the server’s log data. 
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 ●  Client API Module  : The client-facing server module uses public network access to 
 communicate via  the Rosetta API with clients; it handles data representation and 
 network communication for client/server interaction. 

 ●  Base Model Service API Module  : The server module that uses the base model performs 
 communication with the base model service, using its API, often via public network 
 access, except in cases where the base model service operates in the same cloud hosting 
 environment as the agent system’s server. 
 ○  The client side implementation of a base model’s API is a server module that 

 encapsulates model service access behind a model-independent interface that 
 implements multiple kinds of requests to, and responses from, a base model. 

 ○  Different agent systems that use different base models will have a distinct 
 implementation of this model-client subsystem, but different agents using the same 
 base model can use the same model-client subsystem implementation. 

 ●  External Services Modules  : External-facing modules use public network access to 
 communicate with external support services via the API of each service. 

 All the modules of this subsystem are specific to a specific cloud computing environment; for 
 each environment that a server runs in, a cloud-specific implementation of these modules is 
 required. However, the interfaces (from these modules to those of other subsystems) are 
 cloud-independent, providing abstraction and data hiding so that other subsystems’ software 
 can be reused regardless of the deployment environment. These characteristics are essential to 
 the goal of Rosetta software being  cloud-agnostic  . Similarly, the details of the base model are 
 likewise abstracted, meeting the goal that Rosetta software would be  model-independent  . The 
 functions of other subsystems can be implemented and re-used, regardless of the specific base 
 model used in a given deployment. 

 Data Management Subsystem 
 Modules that implement data management for one form of data, each using a client services 
 module for access to the cloud storage services used for the storage of the managed data. 

 ●  Log Module  :  Internal module that writes log data to a data repository, such as a NoSQL 
 key-value database management system, which can be accessed by external software that 
 performs data analytics. 

 ●  Knowledge Base Search Module  : Internal module that takes retrieval requests from other 
 modules, and performs them using data access methods, e.g. vector search, and returns 
 to the caller data relevant to the request. 

 These modules provide abstraction and data hiding for data formats, retrieval algorithms, and 
 use of storage via the cloud-agnostic modules for data storage. 

 The modules of this subsystem also are cloud-agnostic and model-independent, but also have an 
 additional characteristic: domain-independence. That is, these modules perform their functions 
 without regard for the content stored or retrieved, so that the same software can be used for 
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 multiple agent systems, each with its own separate information domain and hence distinct set of 
 contents in the KB. 

 Rosetta Core Subsystem 
 The core subsystem comprises the modules that implement the core functions of prompt 
 processing, KB query, model usage, response construction, and several subsidiary functions. 
 These subsystems are the part of the server architecture that implements the workflow of 
 activities described in the high-level workflow shown in  Figure 2  , and described in more detail 
 in this Section.  There are three phases of the workflow: 

 1.  Prompt intake and pre-NLP preparation 
 2.  Iterative KB search and NLP usage 
 3.  Final response construction, annotation, and delivery back to client. 

 For each phase, there is a module that implements  the functions of that phase of activity 
 involved in processing one user request. The modules are: 

 ●  Prompt Intake and Processing  : The server module that accepts a user prompt from 
 Client API Module  , and processes it in several ways  that are prerequisite to the next 
 phase. These functions include but are not limited to (nor required in the order below): 
 ○  Storage and tokenization (breaking the user text string into separate parts); 

 ○  PII masking, using existing library software, and other library usage for other 
 preparation functions; 

 ○  Toxicity assessment, using an  External Services Module  to access existing services, 
 and other external service usage via other such modules. 

 ○  Initial KB lookup to find KB entries that are relevant to the prompt, via the 
 Knowledge Base Search Module. 

 ○  Logging to record the post-processed prompt (sans PII, toxic elements) and the 
 relevant KB items. 

 See the Appendix for more details on trust and safety processing during intake. 

 ●  Response Development  : The server module that performs the core processing to develop 
 a response (  with citations  ) to the client’s prompt. 
 ○  The central function of this module is an iterative process of retrieval of data from 

 the KB, and use of the base model service. 

 ○  Important additional functionality consists of the use of several trust and safety 
 techniques. See the Appendix for more details on trust and safety processing during 
 response development. 
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 ○  The end result is a set of candidate responses (and citations) for selection as the final 
 output. Logging is also performed, including but not limited to logging each KB 
 retrieval and each base model usage. 

 See the  Appendix  for considerable details on the response development process’s 
 techniques for directed RAG fusion. 

 ●  Response Construction  : The server module that takes the output of the previous step, 
 and processes it to construct the response to the client, both the primary text, and the 
 annotations. Functions include: 
 ○  Relevance ranking of candidate responses, and primary response selection, including 

 as needed use of the base model to craft the the final text expression of the most 
 relevant response’s parts; 

 ○  Collecting, relevance-ranking, and selecting the KB items that were the source for the 
 retrieved data items upon which the final response was based; extracting a citation 
 for each selection item; 

 ○  Finalization of logging for the processing of the current response, including but not 
 limited to logging the final response string and citation set; 

 ○  Passing the final response string and citation set to the  Client API Module  to return 
 to the client. 

 The modules of this subsystem also are cloud-agnostic and model-independent, and also share 
 the goal of being  domain-independent  . To achieve that goal, however, some parts of the model 
 development process will need to be parameterized and controlled by configuration data items 
 that differ between agent systems (e.g., default response text for certain specific kinds of 
 out-of-scope prompts). 

 The Core Subsystem, especially the Response Development Module, implements several critical 
 techniques that enable meeting goals of very high accuracy and relevance. See the appendix  for 
 description of some of the key concepts and techniques used. 

 7. Knowledge Base Management Components 

 The final part of the Rosetta Architecture is the set of technical components used to prepare, 
 deploy, and re-deploy the KB of an agent system. The previous sections have described the 
 software components  that are part of an agent system  running in an operational environment  . 
 This section describes the components that are used as part of  creation  of an instance of such an 
 environment. 

 These KB management tools depend on other preparation tools: deployment automation that 
 sets up an instance of an agent system, creating the cloud deployment environment, copying 
 code and data from a source code repo, setting up cloud services for storage, and more. Once 
 these tools have been used — notably including the setup of a runtime data repository for the KB 
 itself — then KB deployment can be done. 
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 KB management is a lifecycle, which can summarized thusly: 

 ●  Collection of source material for the KB, in a revision controlled repository. 

 ●  Initial use of  KB Compilation tools  before initial deployment of an agent system. 

 ●  Initial use  KB Deployment tools  for the initial deployment of the KB into the cloud 
 runtime environment. 

 ●  Later revision of the source material, re-compilation and redeployment to a staging 
 system, testing, and promotion to production of the updated, tested system. 

 The remainder of this Section provides more detail on the process and tools. 

 Knowledge Base Procedures and Tools 
 The contents of the KB are the heart of any Rosetta based information-retrieval agent system. 

 Building a KB starts with the collection and evaluation of candidate items to become part of the 
 source information base  for the KB. These items can  be text based documents of many formats 
 (including web content) together with metadata that describes the organization associated with 
 each item, and a link to the item original source, if applicable. 

 The collection process culminates in the construction of a repository of the source items. The 
 repository includes a catalog that lists each item in the repository, and the metadata it. 

 A KB builder specialist then uses document tools to build the first instance of the KB data, in two 
 steps. The first step is  compilation:  the ingestion  and dissection of each document, tokenization, 
 tagging, linking (of each token to the source document that will be a citation for it), and creating 
 a dataset in an intermediate form (e.g. JSON files) that are stored in the repo. These tools are 
 cloud-agnostic, domain-independent, and model-independent. 

 The second step is the use of cloud-specific  deployment  tools to copy the data from the 
 intermediate form to a data-store in the specific cloud deployment environment (e.g. vector 
 database) that the agent systems will run in, typically at first a staging system used to deploy the 
 system for access controlled testing. After testing, the staging system would be re-configured to 
 be accessible to the system’s user, thus becoming the production instance of the agent system. 

 Knowledge Base Maintenance 
 Because an agent systems’ KB consists of curated documents in a specific information domain in 
 the real world, changes in the world can result in changes in the source documents, updates to 
 deprecation of them, or the creation of new source documents that deserve to be included in the 
 KB. Periodically, an agent system’s maintainers will choose to update the KB. 

 The first step is for the information domain experts to re-assess the source items in the 
 repository, delete or update them, and to add relevant new items — all with changes or additions 
 to the metadata as well. 
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 The second step is the setup of a new staging environment — a clone of the existing production 
 environment — and a rerun of the KB ingestion and KB deployment tools to deploy the KB as a 
 replacement for the old KB. The same kind of pre-production as before, would precede the 
 deprecation of the old production environment, and the conversion of the staging environment 
 to be the new production environment. 

 8. Summary and Current Status 

 This architecture paper describes the OSET-Rosetta architecture that is used by developers of a 
 system that is a domain-specific information-retrieval agent, which uses a natural language 
 interface for human users, acting for them as an interactive guide to explore a fixed set of 
 authoritative information. The architecture targets systems that share a critical requirement: 
 extremely low tolerance  for an agent that provides  information that might be inaccurate, false, 
 or fabricated by agent “hallucinations.” 

 The architecture supports multiple types of clients, with a user interface that is often tailored to 
 the information domain that uses the services of a domain-independent back-end server system 
 that receives information from a domain-specific knowledge base. The server component uses 
 an external language model service for its function of natural language processing; the server is 
 agnostic as to which particular model or service is employed. 

 The Ella project is the OSET Institute’s current activity in the process of building a reference 
 implementation of OSET-Rosetta – in the form of an agent system focused on a KB built entirely 
 from a curated set of authoritative source information composed of the entirety of official 
 information about election administered and operations in a single election jurisdiction (e.g., at 
 the state, province, county, or township), from election laws and regulations, down to election 
 polling station worker training materials. 

 When open-source software for the initial build of Ella is released, the source code repos will 
 provide the reference implementation for several of the components described in this document: 
 multiple kinds of client, with a UI tailored for Ella’s election information base; a repository of 
 Ella’s election source information for the KB; KB management software; the back-end server 
 software that is independent of the election domain; cloud-specific server modules that can be 
 reimplemented for different cloud environments; multiple model-specific interface modules that 
 hide and use the interface for a particular language model service. 

 While the Ella project is intended as the initial reference implementation, the Institute’s 
 intention is to offer multiple agent systems, each for a distinct information domain, but based on 
 the same set of open-source software defined by the OSET-Rosetta architecture. 
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 Appendix 
 OSET-Rosetta Core Functionality, Key Concepts, and Techniques 

 The Core Subsystem, especially the Response Development Module, implements several critical 
 techniques that enable meeting goals of very high accuracy and relevance. Each of the following 
 sections of this Appendix describes one of the groups of key concepts and techniques used in 
 developing the design of the Core Subsystem. 

 Directed Retrieval-Augment Generation and Fusion 

 The OSET-Rosetta (or Rosetta) Core uses a variant of the common RAG (retrieval augmented 
 generation) technique, and its extension, RAG Fusion. This technique is essential for 
 Rossetta-based systems to meet goals for response-content accuracy and relevance, as well as 
 trust and safety. 

 Background: RAG for Early Generation Chatbots 
 RAG techniques were initially developed to mitigate the detrimental effects on basic 
 chatbot-style systems that resulted from the use of large language models (LLMs): 

 ●  Lack of information relevant to the user prompt, or low relevance density in responses to 
 prompt, sometimes resulting from a  lack of relevant content in the LLM training data, 
 sometimes because relevant content is low-probability in the generative algorthim’s 
 assessment of the prompt. 

 ●  Inclusion of inaccurate information in the response, resulting from one or more such 
 factors as: inclusion in the LLM’s training data of unintentional falsehoods, mendacious 
 statements, satire presented as fact, or once-relevant information that is now out of date 
 and impractical to remove from the LLM. 

 ●  Probabilistically  generated falsehoods, also known as hallucinations, often created when 
 the generative algorithm requires more response content, but the training data has little 
 high-probability training data to use. 

 The basic idea behind RAG is to  augment  the probabilistically  generated response text with 
 information retrieved from one or more information sources that are external to the model 
 itself, and to use that retrieved information as part of the input to the generative algorithm -- 
 hence the name retrieval-augmented generation, or RAG. 

 However, RAG  mitigates  the above shortcomings of pure  LLM-based response generation, 
 improving the quality of chatbot output, but it does not  eliminate  those shortcomings. For 
 general-purpose  natural-language response systems,  the full power of the LLM and the full 
 scope of its training data is needed. Although the response generation is augmented, falsehoods 
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 and hallucinations still occur frequently, though the relevance and accuracy are much improved 
 for those responses that happen to be devoid of hallucinations and falsehoods. 

 Rosetta: Directed RAG for Information Retrieval Agents 
 A central insight for Rosetta stems from the nature of Rosetta-based agent systems being 
 specific to a single information domain, represented in the Knowledge Base (KB) of the 
 particular agent system. In contrast to general-purpose LLM-based systems, Rosetta-based 
 information retrieval (IR) systems are specific-purpose. The insight: specific-purpose response 
 generation does not require the full scope of an LLM. Instead, retrieval-  directed  response 
 generation should be based  entirely  on content retrieved  from the KB. Information from the 
 training data of the LLM is not only irrelevant but harmful; and using an LLM as the primary 
 method of generating responses is inherently risky. 

 In essence, the base model (LLM, SLM, or other) is not used for general-purpose generation but 
 rather for creating responses to internally-developed prompts  that are something like this: 
 “  Provide a 3 paragraph summary of the following 15  bullet points …”  The bullet points are the 
 informational base of the response, but not in format, structure, sequence, or organization that 
 would be typical for a response in a natural language system. The base model is used for its 
 natural language processing (NLP) capabilities to consume the bullet points, and craft a natural 
 (even conversational, if desired) response. 

 This information base for the response is constructed by iterative  retrieval  from the KB of KB 
 items that are relevant to parts of the user prompt. Using this information base as the  directive 
 to the model is the key concept, hence the term  directed  RAG  , where the response should 
 contain only information that was retrieved from the KB. 

 RAG Fusion 
 The Rosetta approach of directed RAG Fusion combines directed RAG, with the addition of 
 innovations of RAG Fusion.  1 

 The Rosetta Core’s use of fusion techniques is intended to: 
 ●  Improve the quality and depth of responses,  providing  a holistic output that resonates 

 with users' multi-faceted informational needs. 

 ●  Increase the likelihood of discovering relevant information that the user did not 
 explicitly ask for. 

 ●  Provide  relevant citations, that is, a link to the  KB items that were used in construction of 
 the response, which a user can use to assess the trustworthiness of the source 
 information behind the KB data that became part of the response. 

 And perhaps most importantly, 

 1  For a more detailed explanation of RAG limitations  and RAG Fusion improvements, see Dr. Kiran Kumar’s “  RAG 
 Fusion Revolution  ” 
 https://medium.com/@kiran.phd.0102/rag-fusion-revolution-a-paradigm-shift-in-generative-ai-2349b9f81c66 
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 ●  Constrain the response generation process and limit the response content to 
 authoritative information sources that are represented in the KB. 

 The basic fusion approach is to use the original user prompts to create multiple variant prompts, 
 and for each, to generate a distinct set of queries on the KB, refine the query results, and use 
 them as the basis for a directed RAG generation of a candidate response. The refinement uses a 
 technique called Reciprocal Rank Fusion (RRF) that in Rosetta is used to sort and rank 
 information for relevance to the original prompt. 

 This directed RAG response generation is done iteratively, to create several variant responses 
 that are then assessed for relevance, as well as other factors (e.g.,  toxicity  ). 

 Directed RAG Fusion 

 The directed RAG fusion method uses a sequence of 4 phases, including an iterative retrieval 
 process, and integration with an external base model. 

 RAG Fusion Process 
 The four phases are: 

 1.  Query Duplication through Base Model  : taking the user's original query and using the 
 base model to create variations. These variations are similar yet distinct queries, 
 effectively expanding the scope of the search. 

 2.  Retrieval via Vector Search  : a  vector-based search based on both the original query and 
 its newly generated counterparts. Multiple queries are explored simultaneously, 
 broadening the range of potential answers. 

 3.  Combining Results with RRF  :  Once Ella has results from all these queries, we combine 
 them using a technique called Reciprocal Rank Fusion (RRF). This method helps refine 
 and prioritize the results based on their relevance. 

 4.  Top Results Selection and Output Generation  : Finally, the top results from these refined 
 queries are selected. This rich pool of information is then provided to the LLM, which 
 considers all these queries and their ranked results to craft a comprehensive and 
 informed response. 

 RAG Fusion Retrieval Process 
 The retrieval process is done iteratively, to create several variant responses that are then 
 assessed for relevance, as well as other factors (e.g. toxicity). The retrieval sequence of 
 processing is: 

 ●  Retrieval  : 
 The retrieval system utilizes a generic retrieval mechanism to find information relevant 
 to the prompt and retrieve internal knowledge. This retrieval mechanism is neither a 
 traditional database management system (DBMS) operation nor a typical search engine 
 algorithm. Instead, the retrieval method depends on the run-time structure of the KB, 
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 stored in a vector database of dissected and tagged micro-elements of the text of the 
 documents in the source data for the KB. Lexical and vector search techniques are used, 
 but unlike in typical RAG, it is an iterative process rather than a linear one. The retrieved 
 information is a set of these tagged micro-elements that the retrieval mechanism 
 returned – essentially short text strings, each linked back to part of a source document 
 that went into the KB. 

 ●  Retrieved Information Analysis  : 
 The retrieved information is then analyzed using tasks including but not limited to: 
 sentiment analysis, entity recognition, and topic modeling to understand the content and 
 identify key themes. Irrelevant information or data with low confidence scores is filtered 
 out. 

 The ETL (Extract, Transform, Load) pipeline is the critical foundation for enriching the 
 retrieved information to unlock its full potential when using large language models. In 
 the Retrieved Information Analysis process, the software can extract from large-scale 
 textual datasets an aggregate of information that is higher likelihood (compared to a 
 linear process) of containing information relevant to the prompt. 

 1.  Extract  : This phase consists of gathering raw textual  data from a myriad of 
 validated sources. This unstructured data serves as the initial building blocks for 
 our analysis. 

 2.  Transform  : The system then harnesses the power of  natural language 
 processing (NLP) to imbue the raw data with rich semantic understanding. A 
 suite of advanced NLP techniques are employed: 
 ●  Sentiment Analysis  : State-of-the-art models analyze  the emotional tenor 

 of the text, classifying it as positive, negative, or neutral. This emotional 
 context can profoundly impact the interpretation of the data. 

 ●  Named Entity Recognition  : Algorithms identify and  classify critical 
 entities like people, organizations, and locations in the text. This metadata 
 unlocks new layers of context and relationships. 

 ●  Coreference Resolution  : By resolving ambiguous pronouns  and 
 references within the text, we achieve a more cohesive understanding of the 
 described entities and events. 

 3.  Load  : The transformed data, now enriched with multiple  layers of semantic 
 annotations, is vectorized and loaded into a format optimized for consumption by 
 large language models. Techniques like subword tokenization and byte-pair 
 encoding ensure efficient representation. The semantic metadata produced 
 during transformation is carefully indexed, enabling the model to associate and 
 leverage the contextual cues developed during training and inference. 

 The result, from sifting a vast expanse of unstructured data through this ETL pipeline, is a rich, 
 contextualized knowledge basis for using base language model, enabling it to engage in nuanced 
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 association, to answer complex queries, and to generate coherent textual artifacts consistent 
 with semantics of the source material that was used to construct the KB. 

 External Base Model Integration 
 After analyzing and post processing the retrieved information, the results are used for a set of 
 interactions with the base model, via use of its API. Both of two approaches are used: 

 ●  Augmenting Retrieved Information with Embeddings  : 
 A powerful external base model can leverage embedding techniques to analyze the 
 retrieved information and internal knowledge. Embeddings are numerical 
 representations that capture the semantic meaning and relationships within text data. By 
 analyzing these embeddings, the base model can identify connections between retrieved 
 information, and rephrase existing information. This enriched data is used for response 
 construction. 

 ●  Direct Response Generation with Guided Embeddings  : 
 The LLM can be directly tasked with crafting the response using the prompt, internal 
 knowledge, and retrieved information. Here, the retrieved data is transformed into 
 embeddings, which guide the model’s internal response generation process. The model 
 leverages its capabilities for content creation while adhering to the direction provided by 
 the prompt and retrieved information. 

 The benefits of using an external base model in directed RAG include: 

 ●  Enhanced Knowledge Access  : 
 The external base model can access and process information from a highly relevant set of 
 sources from within the internal knowledge base. 

 ●  Improved Response Quality  : 
 By leveraging its powerful language processing capabilities, the external base model can 
 generate more informative, creative, and human-like responses. 

 Corrective RAG Techniques 

 RAG Fusion techniques, while powerful, still have failure modes that can be addressed. Use of 
 RAG fusion definitely optimizes a OSET-Rosetta based system to provide relevant and timely 
 responses to user queries; the use of RRF, multiple query generation, and re-ranking of results 
 enhances performance and functionality, increasing the likelihood of response relevance, 
 bridging the gap between a user query and its probable intended meaning. 

 However, there are situations where intervention can overcome what would otherwise be 
 omissions in the end response provided to the client. The practices of Corrective RAG are 
 advancing, and several situations and corresponding interventions can be incorporated into the 
 Retrieved Information Analysis phase listed above. 
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 Perhaps of the most practical importance is the situation in which the retrieval process simply 
 does not turn up any relevant content, or not enough for a relevant response. The intervention is 
 to short-cut the rest of the RAG process, and proceed directly to a response that:  indicates the 
 unavailability of relevant information; instead of citations, provide links to relevant sources that 
 may help answer the user's question, allowing users to access additional information. 

 Other limitations include: the ranking process turns up few high-ranked base documents in the 
 KB; the context-identification process fails to identify contextually relevant KB information; 
 extracted information includes some that is not relevant to the user context of the prompt, or 
 fails checks for relevance. Summarily illustrated, there are seven potential points of failure in 
 implementing a RAG service to be addressed in OSET-Rosetta as identified in a recent paper, 
 shown in the diagram below. 

 Image Source:  Seven Failure Points When Engineering a Retrieval Augmented Generation System  2 

 To detect and overcome these limitations in the retrieval process, there are several applicable 
 techniques: 

 ●  Advanced algorithms that consider all accessible documents equally rather than solely 
 considering the top-ranked documents. 

 ●  Additional context highlighting algorithms (beyond cosine similarity) will increase the 
 ability to harvest contextually relevant information to use in constructing a response that 
 is specific to the prompt. 

 ●  Filtering algorithms remove irrelevant information and misunderstandings that may 
 result from noise or execution errors. 

 ●  Algorithms that assess user input and identify the most relevant answer based on their 
 specificity requirements, to complement the RRF ranking. 

 ●  Probabilistic algorithms to match user prompts to the most relevant document rather 
 than solely providing consolidated answers. 

 2  "  Seven Failure Points When Engineering a Retrieval Augmented Generation System  ” Scott Barnett, Stefanus 
 Kurniawan, Srikanth Thudumu, Zach Brannelly, Mohamed Abdelrazek {scott.barnett, stefanus.kurniawan, 
 srikanth.thudumu, zach.brannelly, mohamed.abdelrazek}@deakin.edu.au, 
 Applied Artificial Intelligence Institute Geelong, Australia 
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 All these methods, and potentially others under development, help to increase the likelihood of a 
 response that is complete with all pertinent information. 

 In addition, other failure modes can rise from retrieval of data in a format not useful to the 
 ranking system. Those failure modes are best addressed in the KB ingestion tools, with the 
 ability to ingest a wide range of formats (e.g. spreadsheets, tables, lists) correctly extracted 
 information will be present in the results of the retrieval process. 

 With the inclusion of such intervention functionality in the Rosetta architecture, Rosetta-based 
 clients can have an increased likelihood of providing consistently accurate and relevant 
 responses, enhancing user satisfaction and increasing trust in the agent system. 

 Trust and Safety Techniques 

 Substantial relevance and accuracy benefits accrue from the techniques discussed above, of 
 limiting generation to information retrieved from a closed KB, and using directed RAG fusion 
 with corrective techniques. 

 In addition, the trust and safety benefits are substantial, especially relevant to what would 
 otherwise be large risks of an IR agent system emitted falsehoods from the base model, or 
 hallucinations. 

 However, these are not the only trust and safety issues. Malicious input can cause responses that 
 are not false or hallucinated but inappropriate, e.g. a response reusing part of the prompt that 
 contains hate speech. Similarly, prompts can contain PII that must not be shared with the 
 language model, or included in the response. 

 In the Rosetta architecture, additional trust and safety measures have a role in two particular 
 parts of the overall workflow: user prompt intake, and assessment of LLM output that is used in 
 RAG fusion processing. The following sections describe trust and safety functions currently 
 relevant to Rosetta, but others may be added over time as trust and safety measures continue to 
 advance in these two areas. 

 Prompt Moderation 
 Prompt moderation is the assessment of user-provided prompt, based on a number of criteria 
 for potentially harmful and/or inappropriate content. Because the nature of these characteristics 
 evolves over time, the Rosetta approach is to use an external service for assessment, rather than 
 try to re-invent assessment methods and keep them current. The  Prompt Intake and Processing 
 module in the Rosetta Core Subsystem includes a sub-module for prompt moderation, which 
 uses an External Services Module to hide the implementation details of the external service (e.g., 
 Google’s “Moderate Text” service). 

 The Prompt Moderation sub-module uses the external service to flag harmful categories and 
 identify sensitive topics while maintaining accuracy and objectivity. The sub-module uses this 
 information to filter the content based on a set of safety attributes, including "harmful 
 categories" and topics that may be considered sensitive. Based on the results of the external 
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 moderation assessment, the Prompt Moderation sub-module makes decisions about which 
 prompts have sufficiently harmful content that the prompt should not be processed, partly to 
 thwart malicious actors from abusing the system, and partly to avoid legitimate user content 
 that could be dangerous. 

 The end result of prompt moderation is to keep the responses relevant, appropriate, and free 
 from any potentially offensive content, protecting users from inappropriate or harmful 
 responses. The full range of safety attributes includes toxic content, derogatory comments 
 targeting identity and protected attributes, violent content, sexual references, insulting or 
 inflammatory language toward a person or group, use of obscene or vulgar language, and 
 descriptions concerning death, harm, and tragedy, as well as screening for any mention or 
 references to firearms and weapons, topics related to public safety, health conditions, medical 
 therapies, religions, or belief systems, and topics related to illicit drugs. 

 PII Filtering and Masking 
 Similar to prompt moderation, the  Prompt Intake and  Processing  module in the Rosetta Core 
 Subsystem includes a sub-module for addressing risk from prompts that contain personal 
 identification information (PII). This sub-module similarly uses existing techniques, but not as 
 an external service -- which would expose the very PII needing protection -- but existing library 
 software focused on Data Loss Prevention techniques using functions such as PII identification, 
 de-identification, masking, and tokenization, so that sub-module can transform a problematic 
 prompt into one that can be safely processed without PII being passed to the base model service, 
 or indeed any service, or retained in the agent system in any way. 

 Guardrails 
 Control of LLM output includes the use of “guardrails” techniques to control the output of the 
 base model. Traditionally, guardrails are integrated during the training of an LLM, such as 
 model alignment, to prevent harmful content. However, the techniques have been adapted for 
 use by applications that use an external base model, just as in the Rosetta architecture. This 
 alternative approach enables developers to implement rails at runtime, similar to dialogue 
 management. This approach allows for establishing guardrails that are defined specifically for 
 Rosetta-style systems, to be model-independent. 

 As with other trust and safety methods, the architectural goals are achieved by use of external 
 services and existing software. The currently most promising option is  NeMo Guardrails  , an 
 open source toolkit developed by NVidia, in order to provide to LLM-based systems a capability 
 for programmable guardrails that control the output of the base model to address out-of-scope 
 topics and non-compliant dialog paths, where the scope and compliance criteria are defined by 
 the system that incorporates NeMo. 

 To enforce compliant dialog paths and consistent language style, the Rosetta Core subsystem 
 uses NeMo library software as an additional layer hiding the details of a specific base model; 
 NeMo acts as an intermediary layer between the base model and the rest of the server software. 
 As a result, there is a layer of control on the integration with external base model services, 
 enabling seamless integration with multiple models (allowing the main body of service software 
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 to be model-independent), with uniform measures for data integrity and system safety that do 
 not depend specifically on one base model. 

 The use of guardrails -- and, over time potentially other external-model-control techniques as 
 they emerge -- is to enhance the user experience of a Rosetta based system, specifically with 
 respect to user perceived trustworthiness of the agent system. The ability to set predefined 
 conversational paths enables  control over the dialogue flow in order to adhere to conversation 
 design best practices, avoiding deviations. Avoiding deviations is important to avoid user 
 interactions that violate user expectations about the agent being limited to one information 
 domain, limited to impartial information retrieval, etc. 

 The use of guardrails is in some sense a “  belt with  suspenders  ” approach alongside directed 
 RAG fusion. Basic RAG functionality ensures that the “raw ingredients” of a response are 
 entirely drawn from the KB. The external model’s role of natural language processing should 
 typically produce output that is similarly in scope; but instead of making this assumption for any 
 of many base models that could be used, guardrails provide specific controls on the LLM and its 
 output. In addition, there is benefit for a conversational natural language interface, for an agent 
 system in which that is desirable. The conversational capabilities of an external model can be 
 used in a controlled manner. 

 Logging 
 Logging is important throughout the subsystems and modules of the OSET-Rosetta architecture, 
 but is particularly important in use by modules that implement trust and safety measures. It is 
 very important to capture in log data the records of every user interaction that is problematic, 
 and every instance in which LLM output is off target. Ultimately, assessment of these records 
 will be up to operations staff, accessing the log data, using analytics and reporting tools, etc.. Not 
 every notable transaction can be flagged in the logs by the software, but the majority can. This 
 majority can help to establish patterns for abuse or misbehavior that staff can look for in the 
 wider range of log data, including external log analysis systems that use machine learning for 
 large scale pattern matching. 
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