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1.  Introduction 
It is well settled that current Voting System Technology (VST) is not considered 
“trustworthy” by definition in a secure computing context, because of its basis on 
commodity Personal Computing (PC) hardware and Operating Systems (OS) software 
that does not support trustworthy computing.  

Of all the voting systems in use for U.S. federal, state, and local elections (as well as for 
elections in other democracies), none were designed and developed using “trusted 
computing” concepts and principles that have been used for decades in high-security 
computing for government critical systems.  We believe this was in part due to two 
reasons:  

1. There was an entirely different set of presumptions about threat models and so-
called “attack surface” when companies seized on the opportunity of the Help 
America Vote Act to develop computer-based electronic voting systems in 
response to the desire to replace punch-cards and lever machines in 2002; and 

2. Even if there had been some amazing insight in security-centric risk modeling, 
the companies who were already in the business of goods and services for election 
administration, as well as new ones from similar (but different) businesses such 
as ATM machinery or gambling machines, did not have the core capabilities or 
domain expertise of trusted computing design and engineering. 

Trusted computing concepts help system architects and engineers isolate “mission-
critical” components of a computer system (including voting systems) to always behave 
in expected ways (such as properly counting and tabulating votes).   
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In addition, none of the available voting systems in use across the U.S. have ever had a 
formal cybersecurity assessment using the standards and techniques used for 
commercial computer systems certified for critical infrastructure activities.1   

Prior independent investigations of voting systems, such as the State of California’s Top-
to-Bottom Review (TTBR) 2 in 2007 and the State of Ohio’s 2007 Evaluation and 
Validation of Election-Related Equipment, Standards and Testing (Everest) 3 report, 
documented a variety of vulnerabilities, including software quality issues and basic 
errors in security functionality of voting systems.  For these stated reasons, a new 
architecture for voting systems design is required as a prerequisite to obtaining truly 
“trustworthy” voting systems technology.4  

The new design proposed in this paper is centered on three principles: 

1. Interoperability, with data exchange based on common data standards; 

2. Segmentation, to separate complex systems into separate segments with 
distinct functions; and  

3. Minimized Architecture, to reduce the attack surface for “mission-critical” 
functions.  

1.1 Background 
There are several documented causes of Voting System Technology (VST) security gaps, 
ranging from uncontrolled use of “untrustworthy” hardware components; poor software 
quality design; improper product delivery practices (e.g., hard-coded, and default 
passwords), and insufficient documentation for security administration of VSTs.  

Although these and other factors apply to a variety of voting system products, there is 
one root cause these voting systems have in common:  

Current VST was not designed with a cybersecurity focus. 

Indeed, the basic architecture of current VST and design of various parts of VSTs were 
designed at a time when cybersecurity was neither a national-security issue, nor a time 

																																																								
1  See: https://www.niap-ccevs.org/Ref/What_is_NIAP.CCEVS.cfm 
2  See: https://www.sos.ca.gov/elections/voting-systems/oversight/top-bottom-review/ 
3  See: https://www.eac.gov/assets/1/28/EVEREST.pdf 
4  We note at the outset that an over-arching design objective is achieving the so-called VAST mandate 

of a trustworthy election. An election once performed is said to be trustworthy if and only if a four-
corners test for trust is fulfilled: that the system is Verifiable, Accurate, Secure, and Transparent (in 
process). This is important for two reasons:  
(1) The defense of democracy must focus on sustaining trust at multiple layers of the administration 

of democracy—from campaigns and electioneering (completely out of scope of the OSET Institute 
charter) to election administration and voting (the technology of which is the focus of the 
Institute’s charter); and  

(2) An essential and imperative principle in the next generation of election technology design is 
transparency—from the architecture to the development and engineering, or the implementation 
and deployment.  For the work of the Institute (and the “OS” in our name, OSET Institute) 
transparency is achieved through publicly available (i.e., open source) technology. 
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when U.S. elections infrastructure faced evident homeland security threats from state 
and non-state actors.  Thus, commercial voting system vendors were not expected to 
make significant investments in a process of green-field product development with 
cybersecurity as its foundations.  

There were, however, powerful market forces motivating these vendors to bring product 
to market rapidly, in response to the passage of the Help America Vote Act of 2002. 
Particularly during the years immediately after the bill’s passage, market demands 
focused on usability, accessibility, and operational efficiency, and there was no focus on 
trusted computing concepts or cybersecurity principles.  For the same reason, the market 
did not provide vendors with a return on investment for efforts to return to the drawing 
boards for security-centric VST development.  

More recently, some next-generation VSTs have shifted to a basis on commercial off-the-
shelf (COTS) embedded systems platforms that have some system security features, 
notably a reduction in extraneous software packages, and methods for detection of 
tampering with software as stored. However, these embedded system platforms still use 
PC hardware, and have a basis in PC operating systems.  As a result, system protection 
mechanisms have been proven they can be bypassed with malicious software, tampering 
with running software, or physical tampering.5  Although these embedded system 
platforms have some security features, their vulnerabilities show that they were not 
designed to provide the level of robust cyber-security that is required for the current 
environment: systems that are designated as critical infrastructure (CI) by the U.S. 
Department of Homeland Security; election officials now being CI operators with a 
mandate that includes the cyber-defense of critical systems; and a demonstrated threat 
of nation-state adversaries that must be contained by cyber-defense.6 

1.2 Scope and Outline 
The scope for this new architecture definition is system-architecture level specification of 
the components of a trustworthy voting system, sufficient to guide trustworthy VST 
development to fill the unmet security and integrity needs of election CI, filling a 
technology gap that has significant national security implications. Filling this gap 
requires a return to the drawing board with regard to VST, starting with a security-
centric architecture for VST that could yield trustworthy systems. This paper presents 
such a new architecture for voting systems to address the new threat environment for 
VST cybersecurity. A security-centric architecture has been adopted by the OSET 
Institute to develop security-centric VSTs.  However, the architecture can be applied 
broadly to the development of other critical infrastructure (CI) systems that have similar 
operational requirements to VST (e.g., financial, power delivery, and transportation 
management systems). 

																																																								
5  See: https://www.fracturelabs.com/posts/2017/exploiting-ms17-010-on-windows-embedded-7-

devices/   
6  See: https://www.eac.gov/election-officials/elections-critical-infrastructure/ 
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A security-centric architecture assumes two criteria to define the scope of a trustworthy 
voting system: an evidence-based voting system with voter-verifiable paper ballots of 
record; and support for risk-limiting auditing of ballots to determine whether election 
results may have been compromised by anomalies in voting system technologies. More 
specifically, this architecture addresses the most currently feasible definition of such a 
voting system: paper ballots that are either hand-marked or machine-marked (the latter 
typically for accessibility), or counted by a trustworthy optical scanner ballot counting 
system. 

Section 2 provides an overview of the system architecture that is common to most 
current VST used in U.S. elections. Section 3 provides a new segmentation schema for 
trusted voting system architecture. Section 4 discusses the benefits that are realized by 
using minimal embedded systems for mission-critical components. Section 5 provides an 
overview of design principles that can guide the design of security–centric architecture 
for voting systems. 

A security-centric architecture, like any architecture for a trustworthy distributed system, 
does not ensure that any specific system built on such architecture will demonstrate any 
particular trust properties of any particular cybersecurity functions. But trustworthy 
system architecture is a prerequisite for a trustworthy system.  With a sound architecture, 
it becomes possible for system engineers to apply a number of design and 
implementation principles that are also needed for a trustworthy system.   

1.3 The Role of Standards and Common Data Formats 
One of the important aspects of the new architecture is the redefinition of a voting 
system as a combination of discrete computing appliances that interoperate with one 
another via well-defined data interfaces. This model is to be distinguished from current 
federal certification guidelines, which understand a “voting system” only as the total 
combination of specific mechanical, electromechanical or electronic sub-components 
(including software and firmware) used to perform a variety of voting functions.7  In 
other words, current certification schemas for “a voting system” typically entertain 
interoperability with external systems, but they do not entertain interoperability among 
discrete, modular appliances that could come from a variety of sources, and that do not, 
together constitute a “voting system.” 

The newer component-based interoperability model became possible through the 
development of common data formats that serve as the common language for 
interoperation. Relatively recent and important work by the U.S. National Institute of 
Standards and Technology (NIST) has defined a standard set of common data formats 
specifically for election data interchange, documented in NIST Guidelines Publication 
1500-100. These formats are essential for the feasible implementation of the type of 
modular architecture defined here. In this document, whenever modules or systems 
exchange data, the implicit assumption is that the data exchange is based on the NIST 
1500-100 standards.  

																																																								
7  See: https://www.eac.gov/assets/1/28/VVSG.1.1.VOL.1.FINAL1.pdf  
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2.  Current VST Architecture: Non-Segmented 
At its highest level, a new VST architecture presents an opportunity to incorporate an 
important architectural principle of segmentation, or the division of a complex system 
into separate segments with distinct functions, interoperating via well-defined interfaces.  
Segmentation provides many benefits in terms of security and flexibility, to cite just two 
examples. 

In current VST system architecture, however, the benefit of segmentation is limited for 
several reasons. 

First, most current voting systems were designed around only two parts: 

• A multi-function software package often referred to as an Election Management 
System (EMS), often deployed on a personal computer in a back-office 
environment of a county registrar, or a local elections office, or a county IT 
department; and  

• Individual voting appliances – hardware/software devices such as voting 
machines, ballot marking and recording devices, and optical scanning devices 
that count paper ballots. 

Within this merged, amalgamated approach, segmentation is further limited in current 
commercial VSTs because:  

• Interfaces are proprietary. 

• The EMS typically incorporates a wide variety of functions (e.g., ballot design, 
device configuration, results reporting) into one comprehensive software family 
whose design (and potential flaws) is not easily disentangled; and   

• Voting devices run on an untrustworthy operating system platform that was not 
designed for cybersecurity. 

In the simplest workflow, each voting device performs a single function (e.g. ballot 
recording, ballot marking, ballot counting), and interacts only with the EMS, by both (a) 
receiving data from EMS via removable storage media, and (b) sending data back to the 
EMS also by removable storage media. In more complex workflows, some hardware 
devices have multiple functions, and communication services that use networking 
services (e.g., ballot counting devices that also serve to communicate unofficial election 
night vote tally data over a closed network (or via the Internet) to an EMS). 

2.1 Monolithic EMS Structure	
Aside from the functions of the voting machines, nearly every other function of a voting 
system, as well as other functions, are combined into the EMS as one software package 
with multiple functions.8  There may be functional separation within such a monolithic 
body of EMS software, or even some software modularity with different functions in 

																																																								
8  See: Section 5, https://votingsystems.cdn.sos.ca.gov/oversight/ttbr/diebold-source-public-jul29.pdf 
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separate modules; but each of these modules is vulnerable to faults originating in other 
modules. 

Figure 1 illustrates a typical EMS deployed on general purpose, personal computer (PC) 
hardware with an operating system (“OS”) (e.g., Windows or Linux). Figure 1 also shows 
the possible modularity within an EMS; the sub-components represent distinct functions 
within the EMS. The EMS itself is an additional application software package 
implemented to run on the PC’s OS and hardware. In older voting systems, contrary to 
best practices, EMS software may also be deployed along with other typical PC 
applications for email, web browsing, document preparation, etc.  

 
Figure 1: Current Monolithic EMS Software Architecture 

 

Two of the EMS functions (ballot-counting device preparation and tabulation 
management) are “mission-critical.”  In particular, the preparation of ballot-counting 
devices is a mission-critical function; incomplete or incorrectly formatted configuration 
datasets (sometimes called election definition files) can cause ballot-counting machines 
to process ballots incorrectly. 

Contrary to current federal voting system definitions, some EMS functions, such as 
ballot layout and report generation, for example, need not be part of a voting system or 
EMS at all, as these functions can be supported by other commonly used commercial-off-
the-shelf (“COTS”) software.  Though any individual EMS might have multiples of these 
ancillary functions, most EMSs have at least one:  a report preparation module, which 
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converts election results data into a variety of reports and formats (e.g., PDF documents 
of vote totals, spreadsheets of precinct-level vote tallies, etc.) 

The light blue rectangles represent the several kinds of election-specific data 
management functions that are typical of most EMSs.  Election preparation involves the 
management of a number of types of data, including jurisdiction data management 
(district and precinct definitions, geospatial information), and ballot items (contests, 
candidates, and ballot questions). Election management also includes the combination of 
this data with ballot rules and logic (e.g., numbers of valid choices; rotation; and voting 
variations such as ranked choice or cumulative voting, etc.), to create a specification for 
each ballot.  Ballot layout is the process of creating a printable document for the paper 
ballot of each ballot specification, as well as preparing data for devices that present 
digital, on-screen ballots. 

All of these preparation activities culminate in the generation of datasets that each type 
of mission-critical voting machine needs in order to present or count ballots.  

The other mission-critical function is that of tabulation, which is typically performed by 
software that is part of the EMS.  Ballot counting devices produce cast vote records (and, 
in some systems, ballot images).  Tabulation software consolidates all this data, and 
combines vote tallies to create election results and other reports.  The final result of the 
tabulation process is a set of data that includes the consolidated tallies as well as more 
detailed data, such as precinct-specific results.  This data is sometimes published, and is 
always post-processed by a report generation process. 

2.2 Monolithic EMS Consequences 
From a design and engineering perspective, the result of the architecture shown in 
Figure 1 is a security conundrum for the following reasons: 

• Shared vulnerabilities. All of the software in a monolithic EMS can harm any 
part of the EMS. 

• Low assurance. At least some of the software was not developed specifically for 
high security, and cannot be regarded as trustworthy (this includes a computer’s 
operating system (OS) that hosts the EMS software). 

• Large attack surface. The amalgamation of many EMS functions in one software 
package creates a large attack surface. 

• Operating system vulnerabilities. The OS, networking capabilities, and a variety 
of non-election-related applications software enlarge the attack surface further. 
Software vulnerabilities in non-election related software applications can be used 
to compromise the whole system, and enable further attacks on the EMS. 

• Potential for modifications. Besides the un-intentional vulnerabilities present in 
the OS, the OS by design is capable of running any compatible software, even 
though the specific configuration of a voting system is required to be unmodified 
from the certified version. 
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• Non-isolated EMS. Successful attack via any one part of the attack surface can 
then be used to compromise the mission-critical functions of the EMS. 

• Non-isolated voting components. A compromised EMS can be the basis for 
attack on the remainder of the voting system. 

As a result, current Election Management Systems are highly vulnerable whether 
operated in a networked environment or “air-gapped.”  Significant vulnerabilities 
result from uncontrolled exchange of data via removable media that can contain 
unauthorized software applications, malware, or data constructed to exploit 
vulnerabilities in the OS, or in the EMS. 

3. New VST Architecture: Segmentation of the EMS 
The first step toward designing a new security-centric architecture is increased 
segmentation, which involves dividing the EMS into four (4) parts.  In addition to 
segmentation, this first step also includes some degree of minimization: removing from a 
target system some inessential functions to make the system a simpler, smaller attack 
surface target.  

The segmentation of the EMS has two essential outcomes: 

1. Reduction in scope of “voting system” software:  The scope of what has 
traditionally been considered “the EMS” that undergoes certification is 
significantly reduced, and it includes only device configuration and tabulation; 
and  

2. Segmentation of voting components:  Mission-critical voting components are 
distinguished from non-mission-critical election administration, such as ballot 
design and customized results reporting, which are no longer part of the “voting 
system” that undergoes certification. 

3.1 Essential Segmentation 
As shown in Figure 2 (Page 10 below), the four kinds of segmentation are: 

1. Separation of mission-critical device configuration function from other election 
administration functions. For purposes of Figure 2, this separate component is 
referred to as a Device Manager.  With this new architecture, this mission-
critical component runs on dedicated hardware, physically separated from the 
remainder of election administration software. The ballot counting devices noted 
in Figure 2, the Precinct Ballot Counter and the Central Ballot Counter are 
segmented in the same manner.  The ballot counting devices receive data created 
in the 4th segment below, provided via removable media, containing data in the 
NIST 1500-100 common data format’s pre-election use case. 

2. Separation of mission-critical tabulation function from other election 
administration functions.  For purposes of Figure 2, this separate component is 
referred to as a Tabulation Manager.  With this new architecture, the Tabulation 
Manager runs on dedicated hardware, physically separated from the Device 
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Manager and the ballot counting devices. The Tabulation Manager receives 
datasets written by ballot counting devices onto removable media (i.e., USB 
thumb drives, or CDs), and performs the same consolidation and validation 
functions as in current, non-security centric VSTs. 

3. Elimination of customized reporting from mission-critical tabulation functions.  
Election officials will still require reports of various kinds to be generated from 
election results data. However, reporting can be done by separate report 
generation software that receives election results data, which we recommend to 
be formatted into the NIST 1500-100 Common Data Format for election results 
reporting. Election officials could choose which COTS report generation system 
to use, and they may also have the option of choosing a proprietary report 
generation product from a voting system vendor.  Under this new architecture, 
we assume that in the future, such products could be developed by vendors in a 
such a way that they would no longer be integrated into a monolithic EMS, and 
thus able to be more readily customized or extended without having any effect on 
the certified tabulation component. 

4. Elimination of other election administration functions from mission-critical 
voting functions.  The remaining EMS functions consist of data management (i.e., 
jurisdiction- and election-specific data), and ballot layout (i.e. ballot “definition”). 
Consequently, Figure 2 includes an Election Data Manager and a Ballot Layout 
Tool, instead of a traditional, monolithic EMS package. These functions are 
relatively static, providing a user interface for viewing and modifying stored 
election definition data. 

The ballot layout tool might benefit from being developed by organizations with 
graphical design and usability test skills that are quite distinct from the skills needed for 
a data management system. Having a separate ballot layout tool means that election 
officials could have options for obtaining distinct tools from vendors with design-centric 
and data-centric skill sets, respectively.  Data exchange and inter-operation would be 
enabled by use of the NIST 1500-100 common data format for pre-election needs. 

A separate ballot layout tool is also advantageous because ballot layout requirements 
vary across election jurisdictions. As a result, the ballot tool could be customizable to 
individual states’ needs, separate from the more data-centric tasks of data management.  

A critical result of the segmentation methods discussed in this section concerns the 
concept of “mission-critical” functions in a voting system.  The fundamental mission of a 
voting system is to:  

• Facilitate the casting of ballots with choices marked based on voter intent; 

• Accurately count ballots and produce election results 

• Demonstrate evidence that the results are based on voters’ choices on their 
marked paper ballots.  
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Figure 2: Essential System Architecture Segmentation 

 

Ballot scanning devices that count and tabulate ballots are clearly essential to this 
mission. The Tabulation Manager device is essential since it is the means of creating 
election results from tallies, and consolidating data that serves as evidence of cast ballots. 
In both cases, these devices depend on election-specific data that is delivered on 
removable media that is prepared for these devices by the mission-critical Device 
Manager.   

The remaining functions (data management, ballot layout, customized reporting) are 
certainly needed for election administration procedures, but they are not mission-critical 
elements of a voting system, strictly speaking. 

3.2 Cybersecurity Benefits from Segmentation 
In a security-centric architecture, the mission-critical functions have two tangible 
benefits that are important enablers for cybersecurity.  First, all of the mission-critical 
functions of a voting system are isolated from the non-mission-critical functions. As a 
result, it becomes possible to implement the mission-critical functions so that they are 
not affected by dysfunction caused by non-critical functions (regardless of whether the 
dysfunction is caused by software anomalies or malicious tampering).  This also 
reduces the attack surface of voting systems from threat actors. 
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Second, each of the mission-critical functions of a voting system are isolated in their own 
hardware/software computing components separated from each other, and from other 
voting system software for other election management functions as a whole.  This 
isolation provides the basis for other steps in the definition of the new architecture that 
will be discussed in the next section. 

3.3 Increased Flexibility for Non-Critical Functions 
With this new architecture, election data management (i.e., the Election Data Manager 
component), and ballot management (i.e., the Ballot Layout Tool component) remain 
outside the mission-critical portion of a voting system. In reference to the data 
management and ballot layout functions, mission-critical voting devices are entirely 
data-driven based on data formatted in a common data format (CDF). Any CDF-
compliant system or tool could be used to prepare the election definition data and ballot 
definition data needed by the mission-critical devices. Thus, the data does not need to 
come from any particular tool or system. Hypothetically, the data could be prepared 
largely manually via an XML editing tool and manual data entry (the most common 
representation of the CDF is XML). 

Of course, in practice it is extremely convenient to have purpose-built tools for election 
data management and ballot management. In a narrow definition of a voting system, 
these non-critical systems might no longer even be part of a voting system per se. If so, 
the benefits could include a significant reduction in the code footprint of a voting system, 
and corresponding reduction in effort and expense of both preparing for a voting system 
test and certification process. 

However, voting system certification is a state-level process, and different states will 
make different choices about what collection of components constitute a voting system, 
and what testing activities are required for certification in the state.9  For example, the 
state of Washington has begun a transformation of its election infrastructure where there 
is a similar segmentation to that described here: much of election management is 
performed in state-managed central IT systems deployed in a private/public cloud 
setting, while ballot tabulation remains the only function performed on dedicated 
hardware managed by county election officials.10  In other states, there might be a 
different model, for example, where election data management is considered to be a 
voting system function that requires certification of software deployed on specific 
hardware.11 

Whatever a state’s certification policies may be, a security-centric architecture provides 
the flexibility for a variety of choices. And in cases where the narrow definition applies, 
the benefits are not limited to the reductions in effort and cost of certifying, delivering, 
																																																								
9  See: http://www.ncsl.org/research/elections-and-campaigns/voting-system-standards-testing-and-

certification.aspx  
10  See: https://www.sos.wa.gov/_assets/office/rfp-18-04.pdf. Detailed information and ongoing history of 

the project status is here:  http://waocio.force.com/ProjectDetail?id=a06U000000eT6MBIA0 
11  See: http://www.ncsl.org/research/elections-and-campaigns/election-administration-at-state-and-

local-levels.aspx 
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and operating certified voting systems. Additional flexibility results from the exclusion of 
most election management functions from the certified software base, and/or the base of 
software that must be performed with dedicated hardware managed by county election 
officials. For the non-critical but practically required voting systems, state-specific 
customization of election-management software is enabled without the constraint of re-
certification, as is continual improvement and feature extension over time. Also, there is 
greater flexibility from choices among deployment options ranging from cloud-based 
services (public, private, or hybrid-cloud services), or datacenter based (where 
government datacenter employees have full control of IT assets), or based on dedicated 
hardware. 

3.4 Segmented, Minimized Architecture 
Figure 3 below illustrates the segmentation, the flexibility for non-critical components, 
and the remaining scope for a security-centric architecture. In the upper box of Figure 3, 
non-critical components are simply ordinary software packages. Below each is the 
deployment platform layer, which illustrates several deployment options of software on 
COTS platforms including: any of several cloud-based environments; a government-
managed datacenter, or dedicated hardware on a local election official’s PC. All these 
election administration components are considered Election Administration Services, 
and are no longer part of the voting system per se.  As a result, the Election 
Administration Services are not subject to a certification process with a much greater 
flexibility in procurement, customization, and deployment. 

Figure 3: New Voting System Architecture — Minimization 
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In the lower half of Figure 3 (above) is the voting system consisting only of individual 
voting system components each with a specific, mission-critical function.  These 
components include a Device Manager, a Ballot Marking Device, a Precinct Ballot 
Counter, a Central Ballot Counter, and a Tabulation Manager.   Each of these voting 
system components has their own embedded application software (illustrated as a solid 
rectangle).  A further distinction is made between “security-critical” devices, which 
record votes, and the ballot-marking device, which does not.12 

The specific nature of each device’s underlying platform (i.e., hardware, firmware, and 
operating system software layers) is illustrated as a question mark (“?”).  It is clear that 
any untrusted commodity operating systems are not a suitable device platform. A trusted 
systems platform is needed, as described in the Section 5. 

A comment is in order regarding one device: the BMD.  Our policy position is that BMDs 
should be restricted to accessibility applications and that in any event they must produce 
a complete and full ballot of record suitable for hand (re)counting, without encoded 
choices, and initially counted by technology parsing for marked choices (i.e., blackened 
circles next to the voter’s choice). 

3.5 Worked Example: Los Angeles County Vote-By-Mail 
A recent worked example of this architecture is a voting system developed by Los 
Angeles County, and certified by the state of California, for use that is limited to by-mail 
voting. 

This certified voting system consists only of a central ballot counter, a device-manager-
like component that prepares election-specific configuration data for the counter, a 
tabulation-manager-like component that combines vote tally data from multiple runs of 
the ballot counter, and a component for sanitizing the USB removable media that is used 
to transfer data between these components. 

Outside of the certified voting system is the election management system (EMS) that Los 
Angeles County previously developed for its own use. The device-manager-like 
component acts as a bridge between the EMS function of election definition, and the 
packaging of election definition data for use by the central counter. 

4. Minimization of Components and Interactions 
“Minimization” at the component level of this architecture is defined as the limitation of 
interfaces and dependencies to only those that are required for a narrow set of voting 
functions, and no more. 

	 	

																																																								
12  The fact that Ballot Marking Devices do not (and must not) record votes means that BMDs could be 

considered by some states as not security-critical (i.e. in contrast to precinct- or central-count ballot 
scanners, for example).  For states that choose to regard a BMD as security critical, this paper 
provides guidelines for minimized embedded systems.  However, for other states that choose to 
regard a BMD as mission-critical, but not security critical, there will be considerable flexibility in 
hardware and software platform options for BMDs. 
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With that in mind, at this point in the definition of a security-centric voting system, we 
have: 

• Segmented the voting system so that the mission-critical parts of the voting 
system are isolated into individual hardware/software devices that perform a 
single function.  

• Completed the architecture of a voting system as a system-of-systems with inter-
operating components. 

• Minimized the functionality of the security-critical voting system components. 

The next step is to analyze the architecture of each of these security-critical devices as 
individual systems in order to: 

• Identify dependencies among these devices, and how they inter-operate with one 
another. 

• Provide goals for the security-centric design of these devices, sufficient to support 
implementation of trustworthy devices. 

4.1 Dependencies and Inter-Operation 
The security-critical voting system components inter-operate with one another mainly 
via data exchange on removable media (i.e., USB thumb drives, SD card, optical media, 
etc.).  The main exception is in the case of the BMD, which interoperates with ballot 
counting devices (i.e., Precinct Ballot Counter and Central Ballot Counter components) 
via paper ballots produced by the BMD and consumed by the ballot counting devices. 

The external interfaces are: 

• Tabulation Manager — which exports election results data to be used by any 
external system. The only functional dependency is that in order for the data to 
be used, an external device that either uses the election-specific data, and/or 
distributes it to other systems that utilizes the data, must read the removable 
media, which is exported by the Tabulation Manager. 

• Device Manager — which depends on an external election data management 
system to provide an election definition dataset that is the partial basis for 
configuration of other devices.  As the single point of interface with untrusted 
systems, the Device Manager’s critical security functional requirement is to 
validate the data imported from removal media, to ensure that it conforms to the 
NIST 1500-100 common data format (CDF). 

These are the interdependent interfaces among the devices: 

1. The Device Manager exports election definitions and configuration data to other 
devices via removable media. 

2. Each device depends on the Device Manager for this data. 

3. Ballot counting devices interact with paper ballots cast by hand or produced by a 
BMD. 
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4. Ballot counting devices export vote tally data. 

5. The Tabulation Manager depends on the ballot counting devices to provide vote 
tally data. 

Each of these interfaces and dependencies are required to implement a “system-of-
systems” within a voting system.  

5. Minimization & Security Goals for an Embedded System Platform 
This new architecture enables (but cannot ensure) a technical approach in which a voting 
system can be designed and implemented for cybersecurity. The component-level 
architecture ensures that the voting system as a whole is reasonably minimized in terms 
of components. In addition, each component is an embedded system that consists of one 
embedded application (ballot marker, ballot scanner, etc.) hosted on an operating 
system and hardware platform that provides important security and integrity properties 
at the level of a single hardware/software device. 

The remainder of this new architecture focuses on the platform, both security related 
design goals, and functional goals.  

5.1 Security-Centric Design Goals 
The starting point of security-centric design is minimization of the software on each 
voting system component, and using a minimized operating system (OS) as the platform 
for the embedded software of each device.  This approach is in contrast to older VST, 
which have a low degree of computing assurance in part because they include general-
purpose operating system distributions containing unnecessary software, which allows 
both the OS itself, and its applications to be modified externally. Some more recent VSTs, 
based on COTS embedded system platforms, do have some degree of minimization of 
extraneous software, but the embedded system platforms retain PC-era vulnerabilities 
for modification of software, or bypass of mechanisms to detect modification. 

Because of vulnerability to software tampering, both these platform choices are 
antithetical to the requirements for voting systems that must be certified before use, and 
may not be modified during use. As with any type of system that has a specific function, 
they must pass a certification and approval process (either at the federal or state level), 
and voting devices may only be used in the certified configuration.  Once the specific 
configuration has been certified, modified components should not be used, as doing so 
would risk compromising the entire voting system.  

By contrast, this new architecture places security-critical voting system devices in a new, 
fairly recent threat model that includes nation-state adversaries capable of tampering 
with voting systems. In this threat model, each security-critical device must be designed 
“from the ground up” for robust cyber-defense against tampering.  
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There are several objectives relevant to the design of each of security-critical/mission-
critical devices: 

• Minimizing the platform hardware to the exact set of hardware components, and 
peripheral devices that are required for the voting system component, and 
enabling the manufacturer of the component to have a small scope for a hardware 
supply chain risk management (SCRM) program. 

• Minimizing the operating system’s kernel software to include only device drivers 
for the specific required hardware devices, and to limit kernel software modules 
for enhanced security controls. 

• Minimizing the operating system’s non-kernel software to be limited only to: 

o The software needed to launch and execute the embedded application 
software of the device, and  

o Software that the embedded application depends upon, notably excluding all 
background or daemon processing, and network –related services. 

• Minimizing the functionality of each embedded application, to perform only the 
minimally required functions (e.g. data import/export, data validation, ballot 
interpretation, and vote tally aggregation depending on the purpose of the voting 
system component), and minimizing the number of existing software packages 
needed to support these functions. 

5.2 System Security and Integrity 
The final element of a security-centric architecture is a set of goals for platform-level 
functions for security and integrity, specifically, the functions required to enable 
individual voting system components to meet some specific system integrity 
requirements derived from U.S. federal voting system certification.  

In brief, that platform of each voting system component (a single hardware/software 
device) must be able to ensure that the device runs software that is all and only the 
software that was tested and certified, without any tampering of or modifications to the 
software in the certified system configuration.  This requirement applies to all the 
software, from operating system kernel to embedded application software.  The breadth 
of the requirement is one reason for the trusted systems design approach of 
segmentation and minimization, to reduce the amount of software and the 
corresponding attack surface for vulnerabilities that could be exploited to modify a 
component and hence no longer match its certified system configuration. 

In addition to platform level tamper detection mechanisms, truly effective system 
integrity protection requires mechanisms that cannot be bypassed by the injection of 
malicious software or the abuse of physical access.  Current COTS embedded platforms 
used in VSTs do not meet this high bar, although that bar has been met for some national 
security systems and some commodity technology (e.g., the hardware and firmware layer 
of iOS-based devices). 
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As a result, no voting system in use today can meet these requirements at the platform 
level, because of the basis in COTS platforms that were never designed to be basis for an 
embedded system with a fixed software base that must be robust in the face of nation-
state adversaries. 

A number of distinct technical mechanisms are required to meet these requirements, and 
the details belong not to voting system architecture, but rather to security architecture of 
the platform for individual voting system components. 

A noteworthy point is that these requirements, and the platform level mechanisms to 
meet them, are not specific to voting systems.  Rather, they are common to many kinds 
of critical computing systems for which acquisition, deployment, and usage are 
constrained by a certification and accreditation system.  In military computing and other 
government operated or regulated critical-computing domains, these requirements have 
been met by usage of existing high-security system technology. 

6. Summary 
In this paper we’ve described a next generation voting system architecture based on 
trusted computing concepts, which differ from those underlying the design of voting 
systems currently in use in the U.S. at least.  This new architecture for voting systems is a 
pre-requisite for the design of a voting system that is composed of security-critical voting 
system components, and for the design of each component as a “trusted system.”   

We submit that this new approach meets or exceeds unmet requirements for the 
development of critical democracy infrastructure and the protection of our national 
security, and is centered on the following three design principles: 

1. Interoperability, with data exchange based on common data standards 

2. Segmentation, to separate complex systems into separate segments with 
distinct functions; and  

3. Minimized Architecture, to reduce the attack surface for “mission-critical” 
functions.  

In addition to defining a voting system based on these principles, this system 
architecture also specifies design objectives and functional requirements for individual 
component-level system security and integrity.  Further technical details are beyond the 
scope of this paper, and part of another forthcoming paper addressing security 
architecture at a component level. 

Although this new voting system architecture describes how to make significant 
improvements in security, integrity, and simplicity compared to current non-security-
centric voting systems, significant work remains and is underway at the OSET Institute’s 
TrustTheVote Project.  	
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In addition to component-level security and integrity mechanisms noted in Section 5, 
both  

• Formal methods; and  
• Strong cryptography  

…are required for high-assurance voting system components.  

Moreover, the use of cryptographic hardware is an opportunity to provide robust 
protection of the cryptographic operations necessary for both code and data provenance 
and integrity, including a trusted boot process (device start-up), as well as data security 
for critical data such as device configurations and vote tallies.   

In this regard, we welcome the recently announced13 work of DARPA in collaboration 
with one of the OSET Institute’s security engineering collaboration partners, Galois.  
Their work on SSITH14 to prove firmware and hardware-level verification is essential if 
not imperative to all sectors of critical infrastructure technology—including devices of 
voting systems (and to that end Galois will provide some prototypical voting system 
component demonstrations to prove the value of this necessary advance in trusted 
computing for critical infrastructure, for which elections technology is now part of one of 
the 16 sectors).  The OSET Institute’s work on the software layer is intended to integrate 
with the work of DARPA and Galois over time. 

Hardware aside, focusing on the overall voting system technology architecture described 
in this paper, on which the TrustTheVote Project ElectOS platform is based, challenges 
and opportunities remain in the development of specific designs and implementations.  
And such challenges all rest upon the fundamental principles described in this paper. 

The new system architecture aims to minimize attack surfaces where possible, and to 
provide much-needed flexibility and cost reduction for non-security-critical functions.  
We submit that providing a balance between security-centric design and the affordance 
of choice and flexibility is one of the greatest strengths of the new architecture for voting 
systems.   

While there is much discussion (and reasonably so) about the on-going cybersecurity 
triage necessary to prepare for the 2020 election, we believe the longer arc of required 
innovation bends in the direction of what has been described in this paper.   

This work requires a balance of engineering resources and modest level of philanthropic 
funding to finish, but in the spirit of our mantra that “Code Causes Change” we remain 
steadfastly confident that its completion will be a very positive disruption in election 
technology advancement in the digital age of foreign-state attackers, with unlimited 
resources, and hell-bent on imploding western democracies. 

Please join us in this fight for defense of democracies—worldwide. 

																																																								
13  See: https://www.militaryaerospace.com/articles/2019/03/trusted-computing-cyber-security-

hardware-design-tools.html  
14  See: https://www.darpa.mil/attachments/SSITHProposersDay.pdf  
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