
v.4.3 February 2018 © 2006—2018 OSET Institute, Inc. All rights reserved. 1

Position Paper

Version 4.3

The Appropriate Use of Open Source Technology
in Government Mission Critical Computing

Prepared For:
U.S. Election Administration Leadership

Prepared By:
E. John Sebes

Co-Founder & Chief Technology Officer

Dr. Clifford Wulfman, MSCS, Ph.D
Sr. Member of Technical Staff

February 2018

Preface
The OSET Institute was founded on the idea that election technology infrastructure is a critical
component of government IT; so critical in fact, that it should arguably be a public asset on
which the commercial industry (or election organizations themselves if properly resourced) can
build and deliver finished open standards, open data, and, accordingly, open-source based
systems. Historically inherent in our name, OSET (“Oh-Set”) are a pair of words, “open” and
“source.” We have always maintained that open source is neither necessary nor sufficient for
higher integrity, lower cost, easier to use election administration systems. However, publicly
available technology (i.e., open source) is an important ingredient to ensuring transparency and
trust in the technology. In the decade since the Institute’s founding, “open source” as a phrase
used in conjunction with voting systems has grown to be a provocative and even in some limited
situations, controversial topic. It should not be.

Open source does not mean “free source.” Open source primarily addresses transparency, as the
phrase elements imply. Open source is both a process of development and a means of
distribution. Applying technology to elections, the objective is elections whose processes are
Verifiable, Accurate, Secure, and Transparent (a principle called the “VAST mandate.”) If
voting technology can be developed transparently, and made available in an unencumbered
manner with incentive to continually innovate while taking care to rapidly identify errors, flaws,
and vulnerabilities, then there is a higher probability for public elections achieving the VAST
mandate.

Therefore, we believe it is essential to understand what exactly open source technology is and is
not; can and cannot do; and the appropriate uses of open source methods and means in
mission-critical government computing, particularly election administration, which has become
a matter of national security. In this paper, Dr. Clifford Wulfman, a senior member of technical
staff at the OSET Institute, and John Sebes, co-founder and CTO, explain just that. We hope it
is helpful to your continuing pursuit of innovation in this vital aspect of democracy
administration.

v.4.3 February 2018 © 2006—2018 OSET Institute, Inc. All rights reserved. 2

Executive Summary
The term “open source” can be used and abused in ways that confound logical, fact-based
technology policy discussions about government procurement of critical software. Such
confounded discussions are a real problem, because Open Source Software (“OSS”) is a nearly
inevitable part of the foundation of any government-critical software, as well as a useful method
for filling technology gaps with non-proprietary software for which there is no profitable
commercial vehicle for its creation and support.

Among the common misperceptions about open-source software are the following.

Common Misunderstandings

1. OSS is communally developed without controls.
Reality: While OSS is frequently developed by highly distributed networks of
contributors, integration of new code and revisions is carefully controlled by project
managers using commonplace techniques employed by software-development
organizations of all stripes.

2. OSS can be modified by anyone.
Reality: While many OSS projects use public software repositories that allow code to be
duplicated and reused, the primary repository remains entirely under the control of its
owners or custodians.

3. OSS depends on free donations from unvetted volunteers.
Reality: Repository custodians have complete control over what, if any, contributions
are incorporated into the code base.

4. OSS is free.
Reality: In many government-computing situations, free simply means that the
contractor will not charge license fees for non-proprietary software. The term does not
necessarily have ideological connotations.

5. OSS is haphazardly dependent on externally developed libraries and
components.
Reality: Code adoption and reuse can take place on a spectrum from disciplined
minimality to sheer expediency for speed of delivery, depending on the choices of an
effort’s leaders, and the team’s effectiveness in executing on those choices.

6. OSS is more (or less) secure and reliable than proprietary software.
Reality: The so-called “security-by-obscurity” model of software development was
debunked long ago, and cyber-security experience has shown that source-code disclosure
does not advantage adversaries. At the same time, while making source code available for
public inspection increases the probability that security flaws will be discovered and
repaired, it does not guarantee it, and does not obviate the need for C & A. Experience
has shown that the technology community, both commercial and noncommercial, is able
to provide resources for custodianship when it is evident that a body of software is truly
critical.

v.4.3 February 2018 © 2006—2018 OSET Institute, Inc. All rights reserved. 3

However, just as non-proprietary software methods (e.g., development, distribution, licensing,
tech transfer, commercial integration and support) are not an intrinsic barrier to effective
creation of government-critical software, neither are these methods a panacea or a guarantee of
success. A non-proprietary software organization still must set appropriate goals for the
adopters’ needs; successfully execute on those goals during initial development, and thereafter;
support successful C & A activities; and provide organizational continuity for ongoing
custodianship of the software.

These requirements for success may be serious challenges in a government technology market
that hasn’t been able to support profitable commercial activity to develop needed solutions.

1. Overview
Open-source technology is an essential part of most modern computing, particularly the open-
source software (“OSS”) that underlies most mobile apps and web services used worldwide, and
the public network infrastructure beneath that. But the term “open source” is widely and
variously used to refer to many concepts that seem inherently inconsistent with technology that
is foundational and essential. Only two aspects of the open source approach — non-proprietary
licensing and distribution — are relevant to government-critical computing.

The list of other, irrelevant connotations of open source is long: OSS is communally developed
without controls; source code can be modified by anyone; OSS development depends on gifts or
volunteer efforts; OSS is free; OSS is haphazardly developed with many unknown dependencies
on a large body of other OSS; OSS source-code publication creates higher software quality from
“many eyes;” OSS is has higher quality and reliability than other software; OSS has lower quality
and reliability than other software; OSS is more secure than other software; OSS is less secure
than other software; OSS necessarily has more (or less) of any number of desirable qualities.

While these conceptions have become common because at least some of them often apply to
software identified as being “open source,” there is no necessary relation: no particular piece of
open-source software need possess all (or even any) of these features. Furthermore, most of the
uses of the term “open source” are actually irrelevant to government-critical computing. But
because this irrelevance is not widely understood, misconceptions of “open source” continue to
foster confusion in technology policy discussions.

2. Decoupling Critical Computing and the Term “Open Source”
In the U.S., almost all government computing relies on open-source software to a significant
degree. Perhaps the largest portion of U.S. government computing — homeland security,
defense, and intelligence computing — is also one of the largest areas of computing anywhere to
explicitly and strategically adopt OSS. This area of “government-critical computing” is an
expedient adopter of non-proprietary software that meets a specific need without the
encumbrances of commercial software acquisition. More than a lead adopter, U.S. government-
critical computing is one of the largest drivers of the creation of non-proprietary software: that
is, software developed under government contracts, with taxpayer funds, resulting in publicly
owned technology. In many situations, technology transfer of such publicly owned technology is
accomplished by methods often associated with open-source software.

v.4.3 February 2018 © 2006—2018 OSET Institute, Inc. All rights reserved. 4

2.1. OSS is Foundational to Critical Computing

As a result, to understand the foundation and evolution of government-critical computing
means understanding not just OSS, but also the variations in its ecosystem for development,
technology transfer, and use. However, many people involved in technology and policy have a
less-than-complete view of OSS, and that varying ecosystem, because of the wide variety of ways
in which OSS is described without regard for these variations. As a result, those confusions and
contradictions can cloud policy discussions about government computing and impede the
adoption of technology that can create real public benefit.

2.2. “Open Source” has a Narrow Meaning in Critical Government Computing

Many of the ideas about open source have their roots in Eric S. Raymond’s The Cathedral and
the Bazaar: Musings on Linux and Open Source by an Accidental Revolutionary (O’Reilly,
2009). Raymond’s book has enduring influence, and it has led to a common perception of an
“open source project” as a sort of commune, or communal effort to pool resources to make
technology in a way that wouldn’t happen in a purely for-profit, strictly proprietary software
effort. Those ideas influenced a lot of work that is called “open source” by the people who do the
work, or by observers of the work.

But in fact, the term “open source” means very little when it comes to critical government
computing and, particularly, election technology, where it pertains to only two things: licensing
practices and distribution practices.

Sometimes people create software that they want others to use without constraint, and so they
distribute it publicly in a raw form — source code — that anyone can use to build and use the
software. That’s distribution. However, in most of these cases, software creators don’t want
others to take the software, claim to own it, and demand fees for its use. Likewise, potential
adopters — especially those in government computing — have a procurement process where
software right-to-use needs to be very clear. To meet both needs, the software’s creators protect
the software with a usage license that’s designed to prevent appropriation while allowing its use
in a variety of commercial settings, including those that involve government procurement of
bundles of software, integration, support, and services.

Fortunately for software creators in such situations, software-licensing-law experts have done
years of work designing a variety of licenses for just these situations. These are called “open-
source licenses” for software. Use of these licenses enables “open-source distribution” with
license protection.

These two practices – open-source licensing and open-source distribution – are better described
by the term non-proprietary. In government-critical computing there are multiple reasons why
it is useful to have non-proprietary software, and careful licensing and distribution are
important to the use of non-proprietary technology. But choosing a licensing and distribution
model is completely separate from choosing a software development model, or a project
management model, or a corporate business model, or a non-profit organization operational
model.

v.4.3 February 2018 © 2006—2018 OSET Institute, Inc. All rights reserved. 5

3. Irrelevant Connotations of the term “Open Source” to Critical
Government Computing

3.1. The Commune

A particularly vexing “open source” misperception is that all open-source projects are
communal. It is certainly true that many “open source projects” are communal efforts, with a
highly distributed network of contributors, working over time to maintain and extend a large
complex body of software like an operating system, or DBMS, or web-application software stack.
Many of these have a governance structure called “commit rights” that vary from a stable inner
circle of distributed contributors, to an individual in sole control, to a core team of people who
are permanent full-time employees of a company that manages the project and the delivery of its
results.

Critical software needs a disciplined software development process, but in terms of discipline
and control, it doesn’t matter whether a team’s source code control uses a publicly visible
control platform like GitHub.com or a completely closed private system. The point is that the
controls of the source-code control system are used by the managers of a project to carefully
separate the main line of software from any number of separate sandboxes used by developers.
Developers and managers need to use these control features in order to have a disciplined
release-engineering process — which is essential to making software releases that clearly defined
and documented for adopters.

But there is nothing mysterious about these controls. They are commonplace techniques used
by software development organizations of many types, from Mil-Spec government contractors to
actual software communes, and all stripes in between. Some “open source” projects may be
communal in nature and also choose to operate with a loose control structure and not much
release engineering. However, for a critical-software effort, those are inappropriate choices,
regardless of whether some might describe the effort as “open source.”

3.2. The Fork

Another serious misperception arises from public software repositories, and the ability of
anyone to make a copy of a software repository in order to do their own work on their own
“fork.” Forking is an obvious consequence of the choice to use a software repository that is
public, as part of a choice about licensing and distribution. If anyone can see it, anyone can copy
it. The license may limit what the copier can do with their copy in commercial activity, but
anyone can copy, and then do what they like with their copy.

Does that mean that anyone can modify any piece of software that’s described as “open source”?
Absolutely not. The primary repository remains in place, regardless of who copies anything
from it, and its contents remain under the control of its owners or custodians. There is no
necessary connection between those custodians’ efforts and people who have made copies for
their own tinkering.

This control concept is essential for government-critical software and its release-engineering
process. At the end of a release cycle, the software is packaged into a whole that needs to exist
standalone, for repeatable testing, often in the context of a government-regulated accreditation

v.4.3 February 2018 © 2006—2018 OSET Institute, Inc. All rights reserved. 6

and certification model. It is a particular release of the critical software, tested and approved,
that a government adopter organization can choose to use — not some ad hoc download from
branch of some repository.

Release engineering and certification and accreditation (C & A) practices are essential parts of
the process of deploying and maintaining government-critical software. C & A applies
regardless of how the software in question is licensed or distributed, regardless of whether it is
secret and proprietary, regardless of whether the source code is available for public use in any
manner.

3.3. The Gift

A related perception is about the “open source” practice of “giving back” elaborations of a
particular software source-code base. Anyone can make a copy, work on it to create some new
feature or extension, and then make that innovation available to the custodians of the source
code base that was copied. Indeed, some OSS licenses place constraints on certain types of
usage and on the ability of a third party (neither custodian nor adopter) to withhold the source
code for extensions.

However, nothing about these gifts compels a custodian to accept them. For critical systems, it
may seem alarming that the source code is being tinkered with by an unknown number of
parties, some of whom make available the results of their tinkering. However, the real issue isn’t
how many offers of gifts are made to a custodian. The real issue is the extent to which a
custodian may choose to accept such a gift, incorporate it in part of the source code base, and
(possibly but not necessarily) include in a future software release some code that was derived
from a gift.

For critical software, this might be less commonplace than in a communal software-
development effort. However, for government-critical software, C & A activities are the more
important parts of the process. C & A requires detailed build tools and documentation, full logs
of source-code control, and the ability for accreditors to see the provenance of every change
made in the source-code control system. Uncontrolled or unwise incorporation of gifts might
occur in a poorly managed development effort, but they can’t be hidden during C & A.

3.4. Free Software

Perhaps the most confusing aspect of open-source software has to do with the notion of freedom
(vs. being free from or of encumbrances).

In some contexts, “free software” means software that users can obtain and use without charge.
A great deal of such free software is not open source, but is in fact proprietary software available
under commercial licenses that happens not to require payments of fees for the right to use it. In
other contexts, “free software” means software that users can run, study, change, and
redistribute without restrictions. This concept is central to the free software movement (FSM) or
free/open source software movement (FOSSM) or free/libre open source software (FLOSS), an
ideological position from which certain kinds of software, or even all software, is so important to
public benefit that is unethical for anyone to claim exclusive commercial proprietary rights to
software, and to change fees for a right to use software.

v.4.3 February 2018 © 2006—2018 OSET Institute, Inc. All rights reserved. 7

Needless to say, there is no logical or causal connection between (a) a development team
choosing to license and distribute non-proprietary software with an OSS license, and (b) the
people in the team holding any particular ideological or political beliefs about “free software.”

Free adoption is not a good fit for government computing. A typical government organization
might possibly include an individual employee who downloads and uses some open-source
software, for example Google’s popular web browser, Chrome. There may even be some
borderline cases where a government organization’s IT department would make a similar
adoption, employing, for example, popular open-source tools for network security. But for any
actual government IT project of any size, the project has a budget to spend on technology
acquisition and services like system integration and support. Where spending public funds is
involved, so also is procurement. A procurement might well include some non-proprietary
software acquired with an OSS license; but that would be one part of a larger set of deliverable
items and services delivered by a commercial contractor to the government.

In this latter situation, “free” simply means that while the contractor will pass through its
expenses for acquiring proprietary software (including license fees), it will not be charging
license fees for non-proprietary software. The contractor will, however, be charging for its
services in integrating, deploying, and supporting the total system that they were contracted to
build. One of the important values of “open source” in this context is that for non-proprietary
software (but not proprietary software acquired by the contractor), the contractor is able to
adapt the non-proprietary software to meet specific government requirements that are not met
“out of the box.”

In other words, just as not all “free software” is “open source”, in many cases “open source”
software is not necessarily free to a government organization. In the latter case, there are no
software license fees, but part of a procured project’s expenses may be specifically for the
contractor’s services in connection with non-proprietary software.

3.5. Undisciplined Complexity

A more subtle myth about “open source” is, like the commune, an aspect of the culture of a
particular software effort’s development practices. The myth arose because in fact many open-
source projects operate more from expediency than discipline and create software with
considerable complexity derived from its “building blocks.”

The building blocks in question are just more software packages. Almost any modern software
development effort will rely on code reuse of pre-existing software that already meets part of the
needs of the software being developed. Such reuse is not mere expediency. Modularity, data
hiding, and code re-use are also important parts of critical software development, where it is
preferable to use existing software packages that have a proven track record in usage, rather
than re-implementing functionality from scratch and risking the creation of instabilities (bugs)
that have already been ironed out from existing stable software.

However, reuse of building blocks can take place on a spectrum from disciplined minimality to
sheer expediency for speed of delivery. Both proprietary and nonproprietary software
development efforts can be anywhere on this spectrum, depending on the choices of an effort’s
leaders, and the team’s effectiveness in executing on those choices.

v.4.3 February 2018 © 2006—2018 OSET Institute, Inc. All rights reserved. 8

As with other choices discussed above, there is no logical connection between these choices, and
choices to develop non-proprietary software. It’s certainly true that many “open source projects”
operate for speed and expediency, without any claim to critical software or to commercial grade
quality and reliability. Indeed, looking at public repositories of public source code, many
reasonable observers would classify a majority of public repositories to be software somewhere
along the spectrum of hobbyist activities — including many repositories that are not principally
about software, but are labeled as “open source” in some sense meaningful to the repository’s
owner. The reverse is also true — public repositories include many large projects with a great
deal of code that is “open source” but high quality, supported by many professionals and their
employers.

Any effort to develop critical software should make more critical choices about which building
blocks to use, and how much effort to invest in assessing their internals and their dependencies.
But the success of execution on those choices is hardly guaranteed — it must be proven in a
process of certification and accreditation (C & A).

3.5.1. Variations in Complexity, and a Note for Election Technology Specifically

Another factor of software complexity is basic requirements. Not every non-proprietary
system needs to be inherently complex. Not every simplistic proprietary system will be
devoid of expedient but unnecessary complexity.

For example, a great many proprietary consumer products sold as part of the “Internet of
Things” are inexpensive products built on open source-operating systems and application
software stacks, with limited attention paid to components and how to use them. Without
any significant care in how the building blocks are used by their vendors, consumers end up
with simple devices like baby monitors (main ingredients: audio microphone and Wi-Fi
hardware; operating system; and a sliver of custom code) with all of a full-service server
operating system in default configurations enabling adversarial usage ranging from
surveillance to spam botnets.

At the other end of the spectrum are military and/or communications embedded systems
that are no less special-purpose systems with limited requirements, but have been built as
critical components, independently tested, certified, and accredited before fielded use. As
components of government-critical computing, these systems can be built to a high standard
of care by a large experienced government contractor, while also being comprised of non-
proprietary software. In many cases, the non-proprietary nature of the software arises
directly from the acquisition of a “custom system” as a work build for hire by the
government, where the builder retains no proprietary rights in usage or distribution of the
software, or in its intellectual property.

Within the field of election technology, individual components of voting systems, such as
ballot-casting or counting devices, can be defined as relatively simple but critical systems,
doing limited functions much like a military embedded system with an optical sensor, and
the ability to capture images, interpret them, and record both raw and interpreted data.
Where a critical system has relatively simple requirements, it can be built with low
complexity and judicious choices of building blocks that have appropriate levels of
complexity, demonstrated reliability, other characteristics.

v.4.3 February 2018 © 2006—2018 OSET Institute, Inc. All rights reserved. 9

3.5.2. Open Source Depends on Open Source

One particular subspecies of the complexity myth is the mistaken notion that open-source
software depends on open-source building blocks, and that open-source building blocks are
necessarily (as a result of being labeled “open source”) of low quality, or have minimal
support, or have sprawling dependencies on other open source software.

Again, that may be true by choice or default in some efforts, but it is hardly a foregone
conclusion, particularly in a critical software effort that must make judicious choices and be
assessed on those choices by accreditors. Furthermore, there is no requirement for a body of
non-proprietary software to depend solely on “free” building blocks (though some open-
software licenses impose this restriction). There is no necessary correlation between robust
support of a building block, and the software license terms under which such a building
block is available for use.

3.6. Many Eyes and Reliability

Software security authorities are often divided into two camps: those who believe that
publishing source code makes software more vulnerable to security exploits and so should be
discouraged (“security by obscurity”); and those who believe that making source code available
for public inspection makes it more likely that security flaws will be discovered and repaired
(“with a thousand eyes all bugs are shallow”).

The so-called security-by-obscurity concept was thoroughly debunked by computer scientists
decades ago (see “Kerckoff’s Law of cryptography”), and cyber-security experience has shown
that source-code disclosure does not advantage adversaries, who typically rely on automated
probing techniques to discover vulnerabilities in running code. Probes and dynamic analysis are
effective across scale and complexity, compared to source code analysis with efforts that
increase super-linearly with size and complexity of source code. Professional adversaries find it
much most cost effective to rely on automation and tools than to grind over large quantities of
course code.

Confidence in critical software is also hard to muster if the closed proprietary software’s owners
both boast of industrial grade security or military grade cryptography, while also admitting fear
that review of their software will enable adversaries to undo all the boasted security. For critical
software, vendor assurance is not the basis of confidence; independent test and review in a C &
A process provides credible assurance in critical software’s adequacy for its purpose.

Lastly, claimed security-by-obscurity also creates a moral hazard for for-profit vendors of
proprietary software. Profitability caps technical efforts; limited technical effort can result is
lower software quality; the belief that limited quality will not be evident (because source code is
private) may lead to poor decisions about efforts for quality vs. other goals. Where there is little
public harm from security incident, such decisions might also have small connection to public
interest. But if software is critical, and failures can create public harm, then hidden deficits in
software quality rise in importance above profitability.

The thousand-eyes concept relies on the probability that flaws in source code are more likely to
be discovered if more people are looking for them — more likely, perhaps, but not guaranteed,

v.4.3 February 2018 © 2006—2018 OSET Institute, Inc. All rights reserved. 10

so for critical software it is unwise to assume that open-source software is less buggy than
proprietary software. The story of OpenSSL is instructive.

OpenSSL is the foundation for cryptographic communication security in an enormous portion of
modern computing. Its source code is public, available for analysis as well as use, and many
adopters have examined the code, including technologists at some of the world’s largest and
most successful technology companies. Nevertheless, a bug introduced in 2012 made machines
using OpenSSL vulnerable to serious security exploitations, and this bug (dubbed “Heartbleed”)
remained latent though in plain sight until 2014.

Prior to Heartbleed’s discovery, the organization supporting OpenSSL had few resources
devoted to software maintenance. When the flaw was revealed, the technology community –
largely for-profit companies – stepped up to provide resources for custodianship.

Heartbleed showed how critical software requires not just availability, but also effective
custodianship for maintenance over time. It also showed that the technology community is able
to provide resources for custodianship when it is evident that a body of software is truly critical.

The characteristics of software – security, quality, reliability, hardware fault-tolerance,
resilience in response to communication interruptions, and many others – are outcomes of
software architecture, design, and implementation efforts. The outcome in any specific case
depends on human efforts, not on post facto issues like whether the source code is published, or
how rights to use the software are sold or controlled, or whether observers use the term “open
source” to describe the software. Open software makes it easier for more interested parties to get
some visibility on such outcomes, but visibility alone neither assures nor threatens the security
of critical functionality.

3.7. Custodianship

Heartbleed showed that, in at least some cases, “open source” foundational and/or critical
software will be curated and sustained by organizations with sufficient resources, over many
years, including significant support and involvement from commercial organizations that non-
exclusively profit from the customization and delivery of the software. There is no necessary or
logical connection between profit motive and sustainability.

This lack of connection is amply demonstrated in government-critical computing. In U.S.
elections, the 2016 election cycle saw approximately a quarter of jurisdictions using products
that are no longer manufactured, including products from vendors years out of business, or
acquired, or liquidated with service contracts transferred to other vendors as part of antitrust
activity. Other voting-system components still in use, including the back-office hub
hardware/software for voting-machine management, depend on versions of Microsoft
operating-system products that are no longer supported and in which new vulnerabilities
continue to be discovered but not remediated.

Not only are these scenarios evidence; they are also well-represented in public policy for
government-critical computing. Just as government procurement sometimes requires open-
sourcing of non-proprietary software (described in more detail below), similar procurement
processes require proprietary software delivery to include source-code escrow. Both methods

v.4.3 February 2018 © 2006—2018 OSET Institute, Inc. All rights reserved. 11

protect government acquirers from situations in which critical software in continuing use turns
out to be orphaned by changes in the original delivering organization.

4. Relevant Connotations: Licensing and Distribution Practices
Having set aside many inappropriate uses of the term “open source” – at least as regards
government-critical computing – let’s circle back to two uses of the term that are relevant and
ask why they are relevant.

As described in Section 1, the term “open source” is a convenient but confusing shorthand for
now-common approaches to distribution and licensing that make software available for broad
use while protecting it from abuse. A better term for these approaches is non-proprietary, and
there are many reasons for the existence of non-proprietary software, ranging from hobbyist
activity, to startups, to well-supported projects to extend and maintain foundational software
like Linux, MySQL, Apache, OpenSSL and many others.

But what is the role of non-proprietary software in government-critical computing? There are
three main use cases: foundational use, outward technology transfer, and inward technology
transfer. Foundational use is simply the adoption of well-supported, well-maintained open-
source software like Linux and OpenSSL which forms the base for government-critical
computing. The other two use cases have to do with software-development efforts to meet
government-specific needs that have not been met by the commercial market.

4.1. Outward Technology Transfer

Not infrequently, projects performed for a government organization by a commercial
organization result in an integrated system that includes the software custom-developed by the
project, together with pre-existing software – often a mix of nonproprietary and proprietary
software that might include software owned by the contractor. In these cases, it is a common
practice in parts of the Federal government, such as DoD and DHS, to require that such software
be published and distributed under an “open source software license” rather than, for example,
granting exclusive IP rights to the contractor so that they can sell that software and related
services to other government entities, and so that they can remain the sole source of future
extensions and support on the custom software. Although such future support might indeed be
delivered by the same contractor, that future work can be competitively bid among any
competitors who might wish to extend or support the publicly-owned non-proprietary software.

4.2. Inward Technology Transfer

It also happens that a government agency is unable to procure new custom software – perhaps
for budgetary reasons. In this case, the technology gap can be filled by a public-service
organization that creates non-proprietary software. However, use by a government organization
will still depend on several factors: a licensing scheme that gives the government a clear right to
use; ready availability for use by the government’s system integrator in its integration efforts;
ability for the software to be adapted or customized by the system integrator to meet customer-
specific needs. An OSS licensing and distribution model meets these needs.

v.4.3 February 2018 © 2006—2018 OSET Institute, Inc. All rights reserved. 12

5. Summary
This paper has described several ways that the phrase-term “open source” can be used (and
abused) in ways that confound logical, fact-based technology policy discussions about
government procurement of critical software. Such confounded discussions are a real problem,
in cases where the phrase “open source” impedes appropriations or procurement of non-
proprietary software, especially non-proprietary software that is a nearly inevitable part of any
government-critical software acquisition.

We began with a half-dozen misperceptions or misunderstandings that need to be examined and
understood with intellectual honesty in any discussion about the appropriateness of open source
developed and distributed software technology. Such analysis begins with the fact-based
observation that open-source technology is an essential part of most modern computing,
particularly the open-source software (“OSS”) that underlies most mobile Apps and web services
used worldwide, and the public network infrastructure beneath that.

Defense and national-security-critical systems use non-proprietary software as foundational
technology, and as part of outward technology transfer for government funded custom software.
Non-proprietary software also has an important role to play in filling technology gaps for which
the commercial market lacks an incentive to fill—again, both as foundational and custom
software.

Election technology is mission critical. It is now well settled to be a matter of national security.
OSS is an appropriate method and means of innovating election technology. OSS is neither
necessary nor sufficient to increase integrity, lower cost, or improve usability of election
technology, but it is an excellent means of increasing transparency and lowering cost in vital
innovations required for critical election technology infrastructure.

This paper therefore, has made an effort to clarify a number of misunderstandings of open
source software technology, and to explain its important role in mission critical computing, such
as the technology of election administration and operation.

We invite and encourage your comments.
Write us: hello@osetfoundation.org

v.4.3 February 2018 © 2006—2018 OSET Institute, Inc. All rights reserved. 13

6. Selected Bibliography

1. INSIGHT-Tech firms let Russia probe software widely used by U.S. government (Reuters,
January 25, 2018)
https://www.reuters.com/article/usa-cyber-russia/insight-tech-firms-let-russia-probe-
software-widely-used-by-u-s-government-idUSL1N1OD2GV

2. Code Review Isn't Evil. Security Through Obscurity Is. (EFF, January 30, 2018)
https://www.eff.org/deeplinks/2018/01/code-review-not-evil-security-through-obscurity

3. Lily Hay Newman. “The Pentagon Opened Up to Hackers—And Fixed Thousands of Bugs.”
November 10, 2017.
https://www.wired.com/story/hack-the-pentagon-bug-bounty-results/

4. Pierluigi Paganini. “Bug bounty programs and a vulnerability disclosure policy allowed
Pentagon fix thousands of flaws.” Security Affairs. November 13, 2017.
http://securityaffairs.co/wordpress/65491/hacking/bug-bounty-program-pentagon.html

5. Response of Red Hat, Inc. to the Request for Comments Regarding Draft Report to the
President on Federal IT Modernization (September 20, 2107)
https://github.com/GSA/modernization/issues/58

6. DoD clarifying guidance to dispel FUD. On October 16, 2009, the DoD published clarifying
guidance that sought to dispel the FUD of OS.
https://web.archive.org/web/20100331033135/http:/cio-
nii.defense.gov/sites/oss/2009OSS.pdf

7. Wheeler, David A. & Dunn, Tom. “Open Source Software in Government: Challenges and
Opportunities.” DHS Science and Technology Directorate, Cybersecurity Division. August
29, 2013. This white paper identifies key challenges and opportunities in the government
application of OSS so that inappropriate roadblocks can be countered or mitigated. These
challenges and opportunities were identified in interviews with experts, suppliers, and
potential users, where users include both government contractors and government
employees. These interviews were conducted in 2011 as part of the DHS Science and
Technology Homeland Open Security Technology (HOST) project. See:
https://www.dhs.gov/sites/default/files/publications/Open%20Source%20Software%20in
%20Government%20%E2%80%93%20Challenges%20and%20Opportunities_Final.pdf
and
https://www.dhs.gov/science-and-technology/csd-host

